Глава 15. Космический танец
В ходе изучения субатомного мира в двадцатом веке физики обнаружили, что вещество имеет динамическую природу, а составные части атома, субатомные частицы представляют собой динамические структуры, существующие не в виде самостоятельных единиц, а в виде неотъемлемых компонентов неразрывной сети взаимодействий. Эти взаимодействия питает бесконечный поток энергии, воплощающийся в обменах частицами, динамическом чередовании стадий созидания и разрушения, беспрестанном изменении энергетических паттернов. В результате взаимодействий образуются все более устойчивые единицы, из которых и состоят материальные тела. Эти единицы, в свою очередь, тоже не остаются неподвижными, но ритмически колеблются. Таким образом, вся Вселенная оказывается вовлеченной в бесконечный процесс движения и деятельности — в постоянный космический танец энергии.
В этом танце принимает участие бесчисленное множество паттернов, которые, как это ни странно, мы можем разделить на несколько основных разновидностей. Изучение субатомных частиц и их взаимодействий открывает нашему взору не мир хаоса, а в высшей степени упорядоченный мир. Все атомы, а значит, и все материальные тела вокруг нас представляют собой сочетания всего лишь трех материальных частиц, обладающих массой: протона, нейтрона и электрона. Четвертая частица, фотон, не имеет массы и является единицей электромагнитного излучения. Протон, электрон и фотон представляют собой устойчивые частицы, что означает, что их существование не прерывается до тех пор, пока они не принимают участия в столкновениях с другими частицами, угрожающими им аннигиляцией.
Распад нейтрона, напротив, может с легкостью произойти в любой момент. Этот процесс, получивший название "бета-распада", представляет собой обычный механизм одной из разновидностей радиоактивных явлений. Он состоит из преобразования нейтрона в протон и возникновения электрона и нейтрино. Нейтрино — еще одна частица, не имеющая массы, но характеризующаяся устойчивостью, подобно протону, электрону и фотону. Запись процесса бетараспада:
n®p+e—+ n (ню)
Преобразование нейтронов в протоны влечет за собой преобразование атомов радиоактивного вещества в атомы другого элемента. Возникающие в ходе этого химического процесса электроны испускаются атомами в виде мощного излучения, которое находит широкое применение в биологии, медицине и промышленности. Установить факт возникновения нейтрино гораздо сложнее, так как эти частицы не имеют ни массы, ни электрического заряда.
Как уже говорилось выше, для каждой частицы существует аналогичная античастица с такой же массой и противоположным зарядом. Античастицей для фотона является сам фотон, античастица электрона называется позитроном; помимо них, нам известны антипротон и антинейтрино.
Упоминавшиеся до сих пор частицы — лишь малая часть всех субатомных частиц, известных современной науке. Все остальные персонажи субатомного мира неустойчивы; они очень быстро распадаются на другие частицы, которые, в свою очередь, могут тоже подвергаться распаду до тех пор, пока не образуются устойчивые частицы.
Самые неустойчивые частицы существуют на протяжении очень небольшого промежутка времени по сравнению с нашими временными масштабами — меньше миллионной доли секунды. Однако прежде чем подвергнуться распаду, преодолевают расстояния, равные размерам нескольких атомов. Это расстояние превышает их собственные размеры примерно в сто тысяч раз
Таблица на рис. 34 включает тринадцать различных видов частиц, многие из которых могут существовать в нескольких "зарядовых состояниях". Так пионы могут иметь положительный заряд (p+), отрицательный заряд (p-) или быть электрически нейтральными (p0). Существует две разновидности нейтрино, различающиеся тем, что каждая из них может взаимодействовать только с определенным типом частиц: первая — с электронами (ne), вторая — с мюонами (nm). Античастицы тоже включены в таблицу, причем три частицы могут быть своими собственными античастицами (g, pm, h). Все частицы расположены в порядке возрастания массы атомов: фотоны и нейтрино не имеют массы, электрон представляет собой легчайшую частицу из обладающих массой, мюоны, пионы и каоны в несколько сот раз тяжелее электрона; Остальные частицы тяжелее электрона в 1000-3000 раз.
Все остальные известные к настоящему времени частицы относятся к числу так называемых "резонансов". Резонансы еще менее долговечны, они не могут преодолевать расстояния, превышающие их размеры больше, чем в несколько раз. Это означает, что пузырьковая камера оказывается беспомощной и не может обнаружить присутствие этих частиц. Поэтому свидетельства их существования могут быть только косвенными.
В процессе столкновения все эти частицы могут возникать и аннигилировать, а также участвовать в виртуальных обменах, осуществляя таким образом взаимодействия между другими частицами. Все взаимодействия делятся на четыре разновидности:
— Сильные взаимодействия.
— Электромагнитные взаимодействия.
— Слабые взаимодействия.
— Гравитационные взаимодействия.
Наиболее известными из них являются электромагнитные и гравитационные взаимодействия, наблюдающиеся в макроскопическом мире. Гравитационные взаимодействия наличествуют между всеми существующими частицами, однако при этом они настолько слабы, что не подвергаются экспериментальной детекции. В макроскопическом мире гравитационные взаимодействия большого количества частиц, составляющих массу тела, складываются и порождают макроскопическую силу гравитации, которая является основной силой во Вселенной.
Электромагнитные взаимодействия происходят между всеми заряженными частицами. Именно они ответственны за все химические реакции, а также за образование и всех атомных и молекулярных структур.
Сильные взаимодействия удерживают вместе протоны и нейтроны внутри ядра. Они порождают ядерную силу — самую мощную из всех известных современной науке сил. Так, например, электроны удерживаются поблизости от атомного ядра при помощи электромагнитной силы, обладающей энергией примерно в десять электрон-вольт, в то время как ядерная сила, связывающая нейтроны внутри ядра, использует энергию, равную десяткам миллионов электрон-вольт.
К сильновзаимодействующим частицам относится подавляющее большинство всех известных частиц. Из всех частиц только пять не могут принять участия в сильных взаимодействиях, как, впрочем, и их античастицы: фотон и четыре лептона, перечисленные в верхней части таблицы.
Таким образом, мы можем разделить все частицы на две большие группы —лептоны и адроны, или сильновзаимодействующие частицы. Адроны, в свою очередь, делятся на мезоны и барионы, между которыми существует довольно много различий. Важнейшее из них заключается в том, что все барионы имеют античастицы, в то время как мезоны могут сами выступать в роли своих античастиц.
Лептоны принимают участие во взаимодействиях четвертого типа — в слабых взаимодействиях. Последние настолько слабы и действуют на таком коротком расстоянии, что не могут удерживать частицы друг подле друга.
Взаимодействий порождают силы притяжения:
Сильные взаимодействия — внутри атомных ядер,
Электромагнитные взаимодействия — внутри атомов и молекул,
Гравитационные взаимодействия — между планетами, звездами и даже целыми галактиками.
Слабые взаимодействия проявляются в единственной форме — в форме некоторых столкновений частиц, а также их распада. К числу последних относится и бета-распад, упоминавшийся выше.
Все взаимодействия между адронами проявляются в обмене другими адронами. Сильные взаимодействия действуют только на очень небольших расстояниях (не превышает нескольких диаметров частицы ) из-за того, что в соответствующих им обменных процессах участвуют тяжелые адроны. Поэтому они не могут создать силу, воздействие которой сказалось бы на нашем макроскопическом окружении. В противоположность сильным, электромагнитные взаимодействия, воплощающиеся в обменах не имеющими массы фотонами, могут происходить между сколь угодно далекими частицами, вследствие чего электрические и магнитные силы хорошо известны в мире больших измерений. Считается, что гравитационные взаимодействия тоже осуществляются при помощи обмена особыми частицами — "гравитонами", однако слабость этих взаимодействий настолько велика, что гравитоны до сих пор не были обнаружены учеными, хотя никаких серьезных поводов сомневаться в их существовании нет.
Наконец, поскольку слабые взаимодействия становятся возможными только при предельно малых расстояниях между частицами — гораздо меньших, чем при сильных взаимодействиях, физики считают, что эти взаимодействия осуществляются при помощи обмена очень тяжелыми частицами.