Стационарная теплопроводность через шаровую стенку

Пусть имеется полый шар (Рис.9.6) – внутренний диаметр d1, внешний диаметрd2, температура внутренней поверхности стенки –tст1, температуранаружнойповерхности стенки –tст2, коэффициент теплопроводности стенки -λ .

Уравнение теплопроводности по закону Фурье в сферических координатах:

Q =-λ·4·π·r2∂t/∂r (9.35)

Или

Q =4·π·λ·Δt/(1/r2 - 1/r1) =2·π·λ·Δt/(1/d1 - 1/d2) = 2·π·λ·d1·d2·Δt /(d2 - d1) = π·λ·d1·d2·Δt/δ (9.36)

где:Δt=tст1–tст2–температурный напор;

δ –толщина стенки.

Стационарная теплопроводность через шаровую стенку - student2.ru


Тема 10. Конвективный теплообмен

Факторы, влияющие на конвективный теплообмен

Конвективным теплообменом называется одновременный перенос теплоты конвекцией и теплопроводностью.

В инженерных расчетах часто определяют конвективный теплообмен между потоками жидкости или газа и поверхностью твердого тела. Этот процесс конвективного теплообмена называют конвективной теплоотдачей или просто теплоотдачей.

Основными факторами, влияющими на процесс теплоотдачи являются следующие:

1). Природа возникновения движения жидкости вдоль поверхности стенки. Самопроизвольное движение жидкости (газа) в поле тяжести, обусловленное разностью плотностей её горячих и холодных слоев, называют свободным движением (естественная конвекция).

Движение, создаваемое вследствие разности давлений, которые создаются насосом, вентилятором и другими устройствами, называется вынужденным (вынужденная конвекция).

2). Режим движения жидкости.

Упорядоченное, слоистое, спокойное, без пульсаций движение называется ламинарным.

Беспорядочное, хаотическое, вихревое движение называется турбулентным.

3). Физические свойства жидкостей и газов.

Большое влияние на конвективный теплообмен оказывают следующие физические параметры: коэффициент теплопроводности (λ), удельная теплоемкость (с), плотность (ρ), коэффициент температуропроводности (а = λ/cр·ρ), коэффициент динамической вязкости (μ) или кинематической вязкости (ν = μ/ρ), тεмпературный коэффициент объемного расширения (β = 1/Т).

4). Форма (плоская, цилиндрическая), размеры и положение поверхности горизонтальная, вертикальная).

Закон Ньютона-Рихмана

Процесс теплообмена между поверхностью тела и средой описывается законом Ньютона-Рихмана, который гласит, что количество теплоты, передаваемой конвективным теплообменом прямо пропорционально разности температур поверхности тела (t'ст) и окружающей среды (t): Q = α · (t'ст - t)·F , (10.1)

Или q = α · (t'ст - t) , (10.2)

где: коэффициент теплоотдачи [Вт/(м2К)], характеризует интенсивность теплообмена между поверхностью тела и окружающей средой.

Факторы, которые влияют на процесс конвективного теплообмена, включают в этот коэффициент теплоотдачи. Тогда коэффициент теплоотдачи является функцией этих параметров и можно записать эту зависимость в виде следующего уравнения:

α = f1(Х; Ф; lo; xc; yc; zc; wo; θ; λ; а; ср; ρ; ν; β) , (10.3)

где: Х – характер движения среды (свободная, вынужденная);

Ф – форма поверхности;

lo – характерный размер поверхности (длина, высота, диаметр и т.д.);

xc; yc; zc – координаты;

wo – скорость среды (жидкость, газ);

θ = (t'ст - t) – температурный напор;

λ – коэффициент теплопроводности среды;

а – коэффициент температуропроводности среды;

ср –изобарная удельная теплоемкость среды;

ρ –плотность среды;ν – коэффициент кинематической вязкости среды;

β – температурный коэффициент объемного расширения среды.

Уравнение (10.3) показывает, что коэффициент теплоотдачи величина сложная и для её определения невозможно дать общую формулу. Поэтому для определения коэффициента теплоотдачи применяют экспериментальный метод исследования.

Достоинством экспериментального метода является: достоверность получаемых результатов; основное внимание можно сосредоточить на изучении величин, представляющих наибольший практический интерес.

Основным недостатком этого метода является, что результаты данного эксперимента не могут быть использованы, применительно к другому явлению, которое в деталях отличается от изученного. Поэтому выводы, сделанные на основании анализа результатов данного экспериментального исследования, не допускают распространения их на другие явления. Следовательно, при экспериментальном методе исследования каждый конкретный случай должен служить самостоятельным объектом изучения.

10.3. Критериальные уравнения конвективного теплообмена

Используя теорию подобия из системы дифференциальных уравнений 10.4, 10.9, 10.10 и 10.11 можно получить уравнение теплоотдачи (10.3) для конвективного теплообмена в случае отсутствия внутренних источников тепла в следующем критериальной форме: Nu = f2(Х; Ф; X0; Y0; Z0; Re; Gr; Pr) , (10.12)

где: X0; Y0; Z0 – безразмерные координаты;

Nu = α ·l0/λ - критерий Нуссельта (безразмерный коэффициент теплоотдачи), характеризует теплообмен между поверхностью стенки и жидкостью (газом);

Re = w·l0/ν - критерий Рейнольдса, характеризует соотношение сил инерции и вязкости и определяет характер течения жидкости (газа);

Gr = (β·g·l03·Δt)/ν2 - критерий Грасгофа, характеризует подьемную силу, возникающую в жидкости (газе) вследствие разности плотностей;

Pr = ν/а = (μ·cp)/λ - критерий Прандтля, характеризует физические свойства жидкости (газа);

l0 – определяющий размер (длина, высота, диаметр).

10.4. Расчетные формулы конвективного теплообмена

Приведем некоторые основные расчетные формулы конвективного теплообмена (академика М.А.Михеева), которые даны для средних значений коэффициентов теплоотдачи по поверхности стенки.

1.Свободная конвекция в неограниченном пространстве.

а). Горизонтальная труба диаметром d при 103<(Gr··Pr)жd <108.

Nuжdср. = 0,5·(Grжd ·Pr ж)0,25 (Pr ж/Prст)0,25 . (10.13)

б). Вертикальная труба и пластина:

1). ламинарное течение - 103<(Gr ·Pr)ж <109:

Nuжdср. = 0,75· (Grжd ·Pr ж)0,25·(Pr ж/Prст)0,25 . (10.14)

2). турбулентное течение - (Gr ·Pr)ж > 109:

Nuжdср. = 0,15· (Grжd ·Pr ж)0,33 ·(Pr ж/Prст)0,25 . (10.15)

Здесь значения Grжd и Pr ж берутся при температуре жидкости (газа), а Prст при температуре поверхности стенки.

Для воздуха Pr ж/Prст = 1 и формулы (10.13-10.15) упрощаются.

Наши рекомендации