Схема запуска генератора Маркса
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ
федеральное государственное автономное образовательное учреждение высшего образования
«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ
ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»
Институт физики высоких технологий
Кафедра сильноточной электроники
ОТЧЁТ
по научно-исследовательской работе магистранта на тему:
Ускоритель мощных пучков ионов различных газов
наносекундного диапазона
(Генератор Аркадьева-Маркса)
Выполнил:
студент гр. _4НМ41_ _Румянцев И.Д._ _______________ 25.12.2015 г.
(ФИО) (подпись)
Проверил:
руководитель ___________ ___Ремнев Г.Е.___ __________ ______________
(должность) (ФИО) (оценка) (подпись)
25.12.2015 г.
Томск 2015
Генератор Аркадьева-Маркса – первичный импульсный накопитель высокого напряжения, в первичных накопителях с повышением напряжения конденсаторы заряжаются от источника параллельно, а разряжаются на нагрузку последовательно, что и дает повышение выходного напряжения Uвых по сравнению с зарядным напряжением U0.
Схема Маркса
Наиболее распространенной схемой такого рода является схема Аркадьева-Маркса (или просто Маркса), показанная на рис. 1.
Рис. 1. Схема генератора Аркадьева-Маркса при N=5.
Схема Маркса состоит из нескольких «ступеней», основными элементами которых являются накопительные конденсаторы С1-С5, разрядники S1-S5 и зарядные резисторы R. В исходном состоянии разрядники S1-S5 разомкнуты, так что каждый из конденсаторов С1-С5 заряжается от сети до напряжения U0 через соответствующие зарядные резисторы R. После пробоя всех разрядников S1-S5 точка Т1 приобретает нулевой потенциал, точки Т2 и Т3 – потенциал «–U0», точки Т4 и Т5 – потенциал «–2U0», и т.д., точка Т10 – потенциал «–5U0». Конденсаторы С1-С5 оказываются включены последовательно, что и дает умножение выходного напряжения генератора Маркса в N раз (N – число ступеней). После пробоя разрядников S1-S5 конденсаторы C1-C5 могут разряжаться не только через нагрузку RL, но и через свои зарядные резисторы R, и чтобы этого не происходило, номинал резисторов R выбирается так, чтобы время разряда каждого конденсатора через свой зарядный резистор, RСi, намного превышало время разряда всех последовательно включенных конденсаторов через нагрузку RL, т.е. RСi >> , откуда следует требование на величину зарядных резисторов
. (1)
Обычно генераторы Маркса помещают в металлический бак, стенки которого защищают окружающую аппаратуру от электромагнитных наводок и служат обратным токопроводом схемы Маркса.
Схема на рис. 1 является простейшей, позволяющей понять сам принцип действия генератора Маркса. На ней не показаны индуктивности и активные сопротивления конденсаторов, разрядников, токопроводов и нагрузки. Реально они, конечно, присутствуют, так что после пробоя всех разрядников разрядная цепь генератора Маркса выглядит так, как показано на рис. 2.
Рис. 2. Схема Маркса на рис. 1 после пробоя всех разрядников.
Эта схема описывается уравнением цепи
,
которое при одинаковых Li, Ci и Ri принимает вид
. (2)
Уравнение (2) описывает эквивалентный RLC контур генератора Маркса, в котором емкость СЭ, индуктивность LЭ и сопротивление RЭ, определяются по правилам сложения этих элементов в последовательной цепи:
СЭ = Сi/N, LЭ = NLi+LL, RЭ = NRi+RL. (3)
Емкость CЭ носит название «ударной» емкости генератора Маркса, в эквивалентной схеме она заряжена до начального напряжения UЭ = -NU0.
Из (2) следует, что волновое сопротивление схемы на рис. 2 равно
(4)
т.е. оно по крайней мере в N раз превосходит волновое сопротивление каждой ступени генератора ri= .
Временная постоянная схемы на рис. 2 определяется выражением
, (5)
при заданных LL и Li она стремится к временной постоянной отдельной ступени ti с ростом N. Отсюда можно сделать ложный вывод, что с ростом числа ступеней N генератор Маркса позволяет формировать все более короткий выходной импульс. На самом деле рост N означает рост напряжения между верхними ступенями генератора и его обратным токопроводом, этот рост напряжения требует увеличения ширины зазора от ступеней до бака, что приводит к неизбежному росту индуктивности Li в верхних ступенях генератора, т.е. росту самой величины ti. Такое повышение индуктивности генератора с ростом числа ступеней N является основным недостатком генератора Маркса.
Ток, протекающий в нагрузке генератора Маркса – это ток, протекающий по всем основным элементам каждой его ступени. Поэтому индуктивность и сопротивление всех его разрядников уменьшают амплитуду и увеличивают ширину импульса тока нагрузки. Это также является недостатком генератора Маркса.
Схема запуска генератора Маркса
Поскольку после срабатывания разрядников верхние ступени генератора Маркса оказываются под высоким потенциалом, то к разрядникам этих ступеней сложно подвести пусковые кабели из-за опасности высоковольтного пробоя. Поэтому обычно генератор Маркса конструируется так, чтобы пробой разрядников нижних ступеней приводил к автоматическому пробою разрядников верхних ступеней. Это позволяет использовать в схеме Маркса простые двухэлектродные разрядники, что существенно упрощает всю конструкцию, повышает надежность и снижает стоимость этих генераторов. Автоматизм пробоя разрядников высших ступеней генератора Маркса достигается так же, как формируется волна перенапряжения в многозазорных разрядниках – за счет емкостных связей между ступенями генератора и его обратным токопроводом, находящимся под нулевым потенциалом.
Итак, в исходном состоянии все конденсаторы заряжены до напряжения «U0», все разрядники разомкнуты и разность потенциалов на каждом из них равна U0, все емкости на землю CG разряжены. Пусть первым пробивается разрядник S1 (этот разрядник самой низшей ступени единственный управляемый). При этом емкость CG, подключенная к точке Т2, заряжается до напряжения «-U0», т.к. потенциал точки Т1 становится равным нулю, а конденсатор С1 разрядиться через R не успевает, и его нижняя обкладка и точка Т2 приобретают потенциал «-U0». Емкость CG, подключенная к точке Т4, остается разряженной в течение времени Dt~RCG, поэтому потенциал точки Т3 в течение этого времени остается равным исходному «U0», а разность потенциалов на разряднике S2 удваивается, и от этого он должен пробиться. После его пробоя емкость СG, подключенная к точке Т4, заряжается до напряжения «-2U0», емкость СG, подключенная к точке Т6, в течение времени Dt~RCG остается разряженной, потенциал точки Т5 остается равным исходному «U0», т.е. разность потенциалов на разряднике S3 утраивается, и от этого он должен пробиться следующим.
Если все ступени генератора Маркса имеют такие емкости СG на землю, то при последовательном пробое разрядников предыдущих ступеней на разрядниках последующих ступеней будет возникать все возрастающее перенапряжение, как при пробое многозазорного разрядника.