Ионизация газов. Несамостоятельный и самостоятельный газовый разряд
ЛАБОРАТОРНАЯ РАБОТА № 2.5
«Изучение газового разряда с помощью тиратрона»
Цель работы: изучить процессы, протекающие в газах при несамостоятельном и самостоятельном разряде в газах, изучить принцип работы тиратрона, построить вольт-амперную и пусковую характеристики тиратрона.
ТЕОРЕТИЧЕСКАЯ ЧАСТЬ
Ионизация газов. Несамостоятельный и самостоятельный газовый разряд
Атомы и молекулы газов в обычных повседневных условиях электронейтральны, т.е. не содержат свободных носителей заряда, а значит, подобно вакуумному промежутку не должны проводить электричество. В действительности газы всегда содержат некоторое количество свободных электронов, положительных и отрицательных ионов и поэтому, хотя и плохо, но проводят эл. ток.
Свободные носители заряда в газе обычно образуются в результате вырывания электронов из электронной оболочки атомов газа, т.е. в результате ионизации газа. Ионизация газа является результатом внешнего энергетического воздействия: нагревания, бомбардировки частицами (электронами, ионами, т.п.), электромагнитного облучения (ультрафиолетового, рентгеновского, радиоактивного, т.п.). При этом газ, находящийся между электродами, проводит электрический ток, что называется газовым разрядом. Мощностью ионизирующего фактора (ионизатора) называется число пар противоположно заряженных носителей заряда, возникающих в результате ионизации в единице объема газа в единицу времени. Наряду с процессом ионизации идет и обратный процесс – рекомбинация: взаимодействие противоположно заряженных частиц, в результате которого появляются электронейтральные атомы или молекулы и излучаются электромагнитные волны. Если для электропроводности газа необходимо наличие внешнего ионизатора, то такой разряд называется несамостоятельным. Если же приложенное электрическое поле (ЭП) достаточно велико, то количество свободных носителей заряда, образующихся в результате ударной ионизации за счет внешнего поля, оказывается достаточным для поддержания электрического разряда. Такой разряд не нуждается во внешнем ионизаторе и называется самостоятельным.
Рассмотрим вольт-амперную характеристику (ВАХ) газового разряда в газе, находящемся между электродами (рис. 1).
При несамостоятельном газовом разряде в области слабых ЭП (I) количество зарядов, образующихся в результате ионизации, равно количеству рекомбинирующих между собой зарядов. Благодаря этому динамическому равновесию концентрация свободных носителей заряда в газе остается практически постоянной и, как следствие, выполняется закон Ома (1):
, (1)
где Е – напряженность электрического поля; n – концентрация; j – плотность тока.
и ( ) – соответственно подвижности положительных и отрицательных носителей заряда; <υ> – дрейфовая скорость направленного движения заряда.
В области высоких ЭП (II) наблюдается насыщение тока в газе (I), так как все носители, создаваемые ионизатором, участвуют в направленном дрейфе, в создании тока.
При дальнейшем росте поля (III) носители заряда (электроны и ионы), двигаясь ускоренно, ионизируют нейтральные атомы и молекулы газа (ударная ионизация), в результате чего образуются дополнительные носители заряда и формируется электронная лавина (электроны легче ионов и значительно ускоряются в ЭП) – плотность тока растет (газовое усиление). При выключении внешнего ионизатора вследствие процессов рекомбинации газовый разряд прекратится.
Рис. 1 | При дальнейшем росте ЭП E>EK (IV) происходит дальнейшая ионизация атомов и молекул газа как электронами, так уже и ускоренными ЭП ионами (электроны и «–»-ионы (анионы) идут к аноду, «+» – ионы (катионы) – к катоду). При бомбардировке катода положительными ионами происходит ионно-электронная эмиссия (выбивание вторичных электронов из катода). Наряду с этим идет процесс возбуждения молекул ионами и переход молекул в основное, невозбужденное состояние с испусканием квантов (порций) света – фотонов, которые также могут участвовать в процессе ионизации молекул и выбивать электроны из катода. |
В результате этих процессов образуются потоки электронов, ионов и фотонов, количество частиц нарастает лавинообразно, идет резкий рост тока практически без усиления ЭП между электродами. Возникает самостоятельный газовый разряд. Переход от несостоятельного газового разряда к самостоятельному называется эл. пробоем, а величина напряжения между электродами , где d – расстояние между электродами, называется напряжением пробоя.
Для эл. пробоя необходимо, чтобы электроны на длине своего пробега успевали набрать кинетическую энергию, превышающую потенциал ионизации молекул газа, а с другой стороны, чтобы положительные ионы на длине своего пробега успевали приобрести кинетическую энергию больше работы выхода из материала катода. Так как длина свободного пробега зависит от конфигурации электродов, расстояния между ними d и количества частиц в единице объема (а, следовательно, от давления), то управлять зажиганием самостоятельного разряда можно как меняя расстояние между электродами d при их неизменной конфигурации, так и изменяя давление P. Если произведение Pd окажется одинаковым при прочих равных условиях, то и характер наблюдаемого пробоя должен быть один и тот же. Указанный вывод нашел отражение в экспериментальном законе (1889г.) нем. физика Ф. Пашена(1865–1947):
Напряжение зажигания газового разряда для данного значения произведения давления газа на расстояние между электродами Pd есть величина постоянная, характерная для данного газа.
Различают несколько видов самостоятельного разряда.
Тлеющий разряд возникает при низких давлениях. Если к электродам, впаянным в стеклянную трубку длиной 30–50см, приложить постоянное напряжение в несколько сотен вольт, постепенно откачивая воздух из трубки, то при давлении 5,3-6,7 кПа возникает разряд в виде светящегося извилистого шнура красноватого цвета, идущего от катода к аноду. При дальнейшем понижении давления шнур утолщается, и при давлении » 13 Па разряд имеет вид, схематически изображенный на рис. 2.
Рис. 2
Непосредственно к катоду прилагается тонкий светящийся слой 1 – катодная плёнка, затем следует 2 – катодное тёмное пространство, переходящее в дальнейшем в светящийся слой 3 – тлеющее свечение, имеющее резкую границу со стороны катода, постепенно исчезающую со стороны анода. Слои 1-3 образуют катодную часть тлеющего разряда. За тлеющим свечением идет фарадеево тёмное пространство – 4. Вся остальная часть трубки заполнена светящемся газом – положительный столб - 5.
Потенциал изменяется вдоль трубки неравномерно (см. рис. 2). Почти все падение напряжения приходится на первые участки разряда, включая темное катодное пространство.
Основные процессы, необходимые для поддержания разряда происходят в его катодной части:
1)положительные ионы, ускоренные катодным падением потенциала бомбардируют катод и выбивают из него электроны;
2)электроны ускоряются в катодной части и набирают достаточную энергию и ионизируют молекулы газа. Образуется много электронов и положительных ионов. В области тлеющего свечения идет интенсивная рекомбинация электронов и ионов, выделяется энергия, часть которой идет на дополнительную ионизацию. Проникшие в фарадеево темное пространство электроны постепенно накапливают энергию, так что возникают условия необходимые для существования плазмы (высокая степень ионизации газа). Положительный столб представляет собой газоразрядную плазму. Он выполняет роль проводника, соединяющего анод с катодными частями. Свечение положительного столба вызвано в основном переходами возбужденных молекул в основное состояние. Молекулы разных газов испускают при таких переходах излучение разной длины волны. Поэтому свечение столба имеет характерный для каждого газа цвет. Это используется для изготовления светящихся трубок. Неоновые трубки дают красное свечение, аргоновые – синевато-зеленое.
Дуговой разряд наблюдается при нормальном и повышенном давлении. При этом ток достигает десятков и сотен ампер, а напряжение на газовом промежутке падает до нескольких десятков вольт. Такой разряд можно получить от источника низкого напряжения, если предварительно сблизить электроды до их соприкосновения. В месте контакта электроды сильно разогреваются за счет джоулева тепла и после их удаления друг от друга катод становится источником электронов за счет термоэлектронной эмиссии. Основными процессами, поддерживающими разряд, являются термоэлектронная эмиссия из катода и термическая ионизация молекул, обусловленная высокой температурой газа в межэлектродном промежутке. Почти все межэлектродное пространство заполнено высокотемпературной плазмой. Она служит проводником, по которому электроны, испущенные катодом, достигают анода. Температура плазмы составляет ~6000 К. Высокая температура катода поддерживается за счет его бомбардировки положительными ионами. В свою очередь, анод под действием быстрых электронов, налетающих на него из газового промежутка, разогревается сильнее и может даже плавиться и на его поверхности образуется углубление – кратер – самое яркое место дуги.. Электрическая дуга впервые была получена в 1802г. русским физиком В.Петровым (1761–1834), который в качестве электродов использовал два куска угля. Раскаленные угольные электроды давали ослепительное свечение, а между ними возникал яркий столб светящегося газа – электрическая дуга. Дуговой разряд используется в качестве источника яркого света в прожекторах проекционных установках, а также для резки и сварки металлов. Существует дуговой разряд с холодным катодом. Электроны появляются за счет автоэлектронной эмиссии с катода, температура газа невелика. Ионизация молекул происходит за счет электронных ударов. Между катодом и анодом возникает газоразрядная плазма.
Искровой разрядвозникает между двумя электродами при большой напряженности ЭП между ними . Между электродами проскакивает искра, имеющая вид ярко светящегося канала, соединяющая оба электрода. Газ вблизи искры нагревается до высокой температуры, возникает перепад давлений, что приводит к возникновению звуковых волн, характерный треск.
Возникновению искры предшествует образование в газе электронных лавин. Родоначальником каждой лавины служит электрон, разгоняющийся в сильном ЭП и производящий ионизацию молекул. Образовавшиеся электроны в свою очередь разгоняются и производят следующую ионизацию, происходит лавинное нарастание количества электронов – лавина.
Образующиеся положительные ионы не играют существенной роли, т.к. они малоподвижны. Электронные лавины пересекаются и образуются проводящий канал стример, по которому от катода к аноду устремляются электроны – происходит пробой.
Примером мощного искрового разряда может служить молния. Разные части грозового облака несут заряды различных знаков ("–" обращен к Земле). Поэтому если облака сближаются разноименно заряженными частями, между ними возникает искровой пробой. Разность потенциалов между заряженным облаком и Землей ~108 B.
Искровой разряд применяется для инициирования взрывов и процессов горения (свечи в двигателях внутреннего сгорания), для регистрации заряженных частиц в искровых счетчиках, для обработки поверхности металлов и т.п.
Коронный (коронарный) разряд возникает между электродами, имеющимися разную кривизну (один из электродов тонкая проволока или острие). При коронном разряде ионизация и возбуждение молекул происходит не во всем межэлектродном пространстве, а вблизи острия, где напряженность велика и превышает Епробоя. В этой части газ светится, свечение имеет вид короны, окружающей электрод.
Корона, возникающая под действием атмосферного электричества на верхушках корабельных мачт, деревьев и т.п., получила в старину название огней святого Эльма. В высоковольтных устройствах, в частности, линиях высоковольтных передач коронный разряд имеет отрицательные последствия (утечки тока). Поэтому провода линий электропередач делают из достаточно толстых проводов, чтобы уменьшить ЭП вблизи провода и исключить паразитные утечки. Коронный разряд используется для заряжения поверхности диэлектриков при создании электретов (в этом случае они называются короноэлектронами), для улавливания пыли в электрофильтрах, в электрофотографии, т.д.
Плазма и ее свойства
Плазмойназывается сильно ионизованный газ, в котором концентрация положительных и отрицательных зарядов практически одинакова. Различают высокотемпературную плазму, возникающую при сверхвысоких температурах, и газоразрядную плазму, возникающую при газовом разряде.
Плазма обладает следующими свойствами:
- высокой степенью ионизации, в пределе – полной ионизацией (все электроны отделены от ядер);
- концентрация положительных и отрицательных частиц в плазме практически одинаково;
большой электропроводностью;
- свечением;
- сильным взаимодействием с электрическими и магнитными полями;
- колебаниями электронов в плазме с большой частотой (»108Гц), вызывающими общую вибрацию плазмы;
- одновременным взаимодействием огромного числа частиц.
Эти свойства позволяют считать плазму особым, четвертым, состоянием вещества.