Биохимическая эволюция

Среди астрономов, геологов и биологов принято считать, что возраст Земли составляет примерно 4,5—5 млрд лет.

По мнению многих биологов, в далеком прошлом со­стояние нашей планеты было мало похоже на нынешнее: по всей вероятности, температура ее поверхности была очень высокой (4 000-8 000 градусов по Цельсию). По мере того как Земля остывала, углерод и более тугоплав­кие металлы конденсировались и образовывали земную кору; поверхность планеты была, вероятно, голой и неров­ной, так как на ней в результате вулканической активнос­ти, непрерывных подвижек коры и сжатия, вызванного ох­лаждением, происходило образование складок и разрывов.

Полагают, что в те времена атмосфера была совершен­но не такой, как теперь. Легкие газы — водород, гелий, азот, кислород и аргон — уходили из атмосферы, так как грави­тационное поле нашей еще недостаточно плотной плане­ты не могло их удержать. Однако другие соединения, содер­жащие (среди прочих) эти элементы, должны были удержи­ваться: к ним относятся вода, аммиак, двуокись углерода и метан. До тех пор, пока температура Земли не упала ниже 100 градусов по Цельсию, вся вода, вероятно, находи­лась в парообразном состоянии. Атмосфера была, по-види­мому, «восстановительной», о чем свидетельствует наличие в самых древних породах Земли металлов в восстанови­тельной форме, таких как двухвалентное железо. Более молодые горные породы содержат металлы в окисленной форме, например, трехвалентное железо. Отсутствие в атмос­фере кислорода было, вероятно, условием для возникнове­ния жизни; лабораторные опыты показывают, что, как это ни парадоксально, органические вещества (основа живых организмов) гораздо легче создаются в восстановительной среде, чем в атмосфере, богатой кислородом.

В 1923 г. АЛ. Опарин высказал мнение, что атмосфе­ра первичной Земли была не такой, как сейчас. Исходя из теоретических соображений, он полагал, что органические вещества, возможно, углеводороды, могли создаваться в океане из более простых соединений; энергию для этих




реакций синтеза, вероятно, доставляла интенсивная солнеч­ная радиация (главным образом ультрафиолетовая), па­давшая на Землю до того, как образовался слой озона, кото­рый стал задерживать большую ее часть. По мнению Опа­рина, разнообразие находившихся в океане простых со­единений, площадь поверхности Земли, доступность энер­гии и масштабы времени позволяют предположить, что в океанах постепенно накопились органические вещества и обр азовался тот «первичный бульон», в котором могла возникнуть жизнь. Эта идея была не нова; в 1871 г. схо­жую мысль высказал Дарвин: «Часто говорят, что все не­обходимые для создания живого организма условия, кото­рые могли когда-то существовать, имеются и в настоящее время, но если (ох, какое это большое «если») представить себе, что в каком-то небольшом теплом пруду, содержа­щем всевозможные аммонийные и фосфорные соли, при наличии света, тепла, электричества и т. п. образовался бы химическим путем белок, готовый претерпеть еще более сложные превращения, то в наши дни такой материал не­прерывно пожирался бы или поглощался, чего не могло случиться до того, как появились живые существа».

В 1953 г. Стэнли Миллер в ряде экспериментов моде­лировал условия, предположительно существовавшие на первобытной Земле. В созданной им установке, снабжен­ной источником энергии, ему удалось синтезировать мно­гие вещества, имеющие важное биологическое значение, в том числе ряд аминокислот, аденин и простые сахара, та­кие как рибоза. После этого Орджел в Институте Солка в сходном эксперименте синтезировал нуклеотидные цепи длиной в шесть мономерных единиц (простые нуклеиновые кислоты).

Позднее возникло предположение, что в первичной ат­мосфере в относительно высокой концентрации содержа­лась двуокись углерода. Недавние эксперименты, проведен­ные с использованием установки Миллера, в которую, од­нако, поместили смесь СО2 и Н2О и только следовые ко­личества других газов, дали такие же результаты, какие по­лучил Миллер. Теория Опарина завоевала широкое призна­ние, но она оставляет нерешенными проблемы, связанные с переходом от сложных органических веществ к простым живым организмам. Именно в этом аспекте теория био­химической эволюции предлагает общую схему, приемлемую

для большинства современных биологов. Однако они не пришли к единому мнению о деталях этого процесса.

Опарин полагал, что решающая роль в превращениях неживого в живое принадлежала белкам. Благодаря амфо-терности белковых молекул, они способны к образованию коллоидных гидрофильных комплексов — притягивают к себе молекулы воды, создающие вокруг них оболочку. Эти комплексы могут обособляться от всей массы воды, в ко­торой они суспендированы (водной фазы), и образовывать своего рода эмульсию. Слияние таких комплексов друг с другом приводит к отделению коллоидов от водной сре­ды — процесс, называемый коацервацией (от лат. — сгус­ток, куча). Богатые коллоидами коацерваты, возможно, были способны обмениваться с окружающей средой веществами и избирательно накапливать различные соединения, в особен­ности кристаллоиды. Коллоидный состав данного коацер-вата, очевидно, зависел от состава среды. Разнообразие со­става «бульона» в разных местах вело к различиям в хи­мическом составе коацерватов и поставляло сырье для «биохимического естественного отбора».

Предполагается, что в самих коацерватах входящие в их состав вещества вступали в дальнейшие химические реакции; при этом происходило поглощение коацервата-ми ионов металлов и образование ферментов. На границе между коацерватами и внешней средой выстраивались мо­лекулы липидов (сложные углеводы), что приводило к об­разованию примитивной клеточной мембраны, обеспечива­ющей коацерватам стабильность. В результате включения в коацерват предсуществующей молекулы, способности к самовоспроизведению и внутренней перестройке покрыто­го липидной оболочкой коацервата могла возникнуть при­митивная клетка. Увеличение размеров коацерватов и их фрагментация, возможно, вели к образованию идентичных коацерватов, которые могли поглощать больше компонен­тов среды, так что этот процесс мог продолжаться. Такая продолжительная последовательность событий должна была привести к возникновению примитивного самовоспроизво­дящего гетеротрофного организма, питавшегося органиче­скими веществами первичного «бульона».

Хотя эту гипотезу происхождения признают очень мно­гие ученые, астроном Чандра Викрамасингх недавно выс­казал мнение, что мысль о возникновении живого в резуль-

тате описанных выше случайных взаимодействий молекул «столь же нелепа и неправдоподобна, как утверждение, что ураган, пронесшийся над местной свалкой, может привес­ти к сборке Боинга-747». Самое трудное для этой теории — объяснить появление способности живых систем к само­воспроизведению. Гипотезы по этому вопросу пока мало­убедительны.

Существенным недостатком старых гипотез о возник­новении жизни на Земле, и в частности гипотезы академи­ка А.И. Опарина, является то, что они не опираются на современную молекулярную биологию. Впрочем, это впол­не естественно, так как механизм передачи наследственных признаков, и в частности роль ДНК, стал в известной сте­пени ясным только сравнительно недавно.

Как произошел качественный скачок от неживого к живому, гипотеза А.И. Опарина совершенно не объясняет. Только привлечение основных представлений современной молекулярной биологии, а также кибернетики, может по­мочь решению этой важнейшей, основной проблемы. Неко­торые пути ее решения уже намечаются. Важным вопро­сом является возможность синтеза ДНК в естественных условиях «первобытной» Земли.

Итак, центральной проблемой происхождения жизни на Земле является реконструкция эволюции механизма на­следственности. Жизнь возникла только тогда, когда на­чал действовать механизм репликации1. Любая сколь угодно сложная комбинация аминокислот и других слож­ных органических соединений — это еще не живой орга­низм. Ведь последний, даже в простейших случаях — это отлично налаженный механизм, способный к репликации. Можно, конечно, предположить, что при каких-то исключи­тельно благоприятных обстоятельствах где-то на Земле возникла некая «праДНК», которая и послужила началом всему живому на Земле. Вряд ли, однако, это так, если ги­потетическая «праДНК» была вполне подобна современ­ной. Дело в том, что современная ДНК сама по себе совер­шенно беспомощна. Она может функционировать только при наличии белков-ферментов. Думать, что чисто случай­но, путем «перетряхивания» отдельных белков — много­атомных молекул — могли возникнуть такая сложнейшая машина как «праДНК» и нужный для ее функционирова­ния комплекс белков-ферментов, — это значит верить в

чудеса. Куда, например, более вероятно предположить, что какая-нибудь мартышка, беспорядочно барабаня по клавиа­туре пишущей машинки, случайно напечатает, например, 66-й сонет Шекспира.

Английский биолог Ф. Крик, расшифровавший код ДНК и получивший за это Нобелевскую премию, считает, что «если это не фантазия, то Мыслящее Существо (Homo Sapiens) служит только орудием, упаковкой, неким космо-бусом для распространяющегося Истинного Разума, скры­вающегося в разумной и победоносной крупинке рибонук­леиновой кислоты. Это ДНК творит цивилизацию! Наше тело и разум вместе с их физическими и духовными «уси­лителями» — это только орудия того (занесенного, очевид­но, несколько миллионов лет назад на нашу Землю) заро­дыша, который имеет задачу овладеть нашей Галактикой или нашей частью Вселенной. А в дальнейшем будущем — встреча с Теми, которые его занесли на нашу Землю». Од­нако это только «фантастическая гипотеза». Речь в этой гипотезе идет о внеземных существах, сеющих семена жиз­ни в различных частях Вселенной, чтобы в конечном сче­те господствовать над ней. Доводом в пользу этой доволь­но-таки фантастической гипотезы служит наличие в бел­ке молибдена в количестве непропорционально большем, чем имеется его на Земле, что может свидетельствовать о космическом генезисе ДНК и жизни на нашей планете.При таком подходе человек является в определенном смысле искусственным знаком, запрограммированным кос­мическим сообщением, доказывающим возможность жиз­ни в космосе.

Мы еще раз должны подчеркнуть, что центральная про­блема возникновения жизни на Земле — объяснение каче­ственного скачка от «неживого» к «живому» — все еще далека от ясности. Недаром один из основоположников современной молекулярной биологии профессор Крик на Бюраканском симпозиуме в сентябре 1971 года сказал: «Мы не видим пути от первичного бульона до естествен­ного отбора. Можно прийти к выводу, что происхождение жизни — чудо, но это свидетельствует только о нашем не­знании».

В связи с возможностью синтеза живого вещества (не обязательно разумного) из неживого возникает большое количество острых проблем. Так, И. С. Шкловский пишет,

что «коль скоро не существует принципиального различия между жизнью естественной и жизнью искусственной, нельзя исключить возможность того, что жизнь на некото­рых планетах может иметь искусственное происхождение. Небезынтересно в порядке гипотезы обсудить возможность занесения живых спор и микроорганизмов во время посе­щения безжизненной планеты недостаточно стерилизован­ным инопланетным космическим кораблем. Можно так­же высказать гипотезу гораздо более радикального свой­ства: жизнь на некоторых планетах могла возникнуть как результат сознательного эксперимента высокоорганизован­ных космонавтов, некогда посетивших эти планеты, кото­рые в те времена были безжизненны. Можно даже предпо­ложить, что подобное «насаждение жизни», так сказать, «в плановом порядке» является нормальной практикой высокоразвитых цивилизаций, разбросанных в просторах Вселенной. Вместо того, чтобы пассивно ожидать «есте­ственного», самопроизвольного возникновения жизни на подходящей планете — процесса, возможно, весьма малове­роятного, высокоразвитые галактические цивилизации как бы планомерно сеют посевы жизни во Вселенной... Если это так, то вероятность обитаемости планетных систем в Га­лактике может быть увеличена на много порядков. Нако­нец, чтобы быть последовательным, нужно еще учитывать возможность заселения планет, на которых существуют подходящие условия, разумными существами — искусст­венными или естественными».

В интервале времени между 4,6 и 3,83 млрд лет назад на Земле возможны были два события: 1) химическая эво­люция привела к спонтанному зарождению жизни; 2) на нашей планете жизнь возникла благодаря панспер­мии; семена жизни проросли при благоприятных физиче­ских условиях. Английские астрономы Ф. Хойл и Ч. Вик-рамасингх приводят аргументы в пользу второго события. Прежде всего против первого события свидетельствует про­блема возникновения присущего жизни объема информа­ции, которая специфична в качественном отношении и характеризуется астрономическими числами в количествен­ном отношении. Действительно, хорошо известно, что име­ется порядка 1 000-2 000 ферментов, играющих централь­ную роль в жизнедеятельности организмов, начиная с прос­тых микроорганизмов и кончая человеком. Расчеты пока-

зывают, что вероятность получить, например, сто ферментов равна 201000, а это превышает число атомов, содержащих­ся во всех звездах Вселенной. Поэтому первое событие оказывается невозможным, представляется более вероятной возможность осуществления второго.

Следующим соображением служит факт прекрасного соответствия общего элементарного состава комет содержа­нию элементов живой материи. Кроме того, кометы содер­жат воду и органическое вещество, являющееся превосход­ной питательной средой для некоторых видов микроорга­низмов. Исследования комет показали, что в них неопре­деленно долго могут сохраняться почти все формы микро­организмов, известных в настоящее время на Земле. Со­гласно гипотезе Ф. Хойла и Ч. Викрамасингха, наша пла­нета ежегодно получает более 1018 спор как остаток комет-ного материала, рассеянного в Солнечной системе. Таким образом, именно кометы принесли на Землю органические молекулы, способствовавшие возникновению на ней жизни. Более того, к нам до сих пор продолжают поступать из космоса живые организмы в виде бактерий и вирусов. Не­обходимо отметить, что данная гипотеза не пользуется большой популярностью среди представителей мира науки.

В настоящее время Ф. Хойл и Ч. Викрамасингх исхо­дят из существования Высшего разума, который является частью космоса. В качестве основополагающего тезиса бе­рется положение о том, что жизнь как на Земле, так и во­обще где-либо во Вселенной не может возникнуть случай­но. Чтобы объяснить накопленные факты в различных научных дисциплинах, начиная с космологии и кончая биологией, необходимо выбрать один из альтернативных вариантов: либо жизнь представляет собой акт преднаме­ренного творения, либо для вечной и безграничной Вселен­ной характерно неизменное постоянство картин жизни. Принятие первого варианта приводит современные космо­логические представления к отождествлению с библейски­ми истинами и вносит акт творения в царство эмпириче­ской науки. Ф. Хойл и Ч. Викрамасингх не приемлют представления о Творце, находящемся вне Вселенной, где когда-то вполне естественным путем возник Высший ра­зум, который значительно превосходит человеческий и ко­торый сотворил жизнь.

В то же время в XX в. получает мощное развитие и хорошее эмпирическое и теоретическое обоснование возрож­денная на новом уровне доктрина о спонтанном возник­новении жизни из неживой материи, причем существуют многочисленные варианты абиогенеза. Эта химическая концепция происхождения жизни не может не считаться стем фундаментальным положением, что генезис жизни представляет собой закономерный этап в общем развитии Вселенной. Круг вопросов, связанных сидеей о космиче­ском характере жизни, получил серьезное обоснование в трудах В.И. Вернадского изанимает одно из центральных мест в современной науке. В своих «Философских мыслях натуралиста» наш соотечественник подчеркивает, что если в самых различных философских системах вопрос о косми­ческой природе жизни ставился и ставится многократно, то сейчас он должен быть поставлен и в науке. И действи­тельно, многие научные дисциплины — космология, астро­физика, космохимия, планетология, биофизика и другие — дают основания для вывода о том, что жизнь представляет собой результат естественной эволюции Вселенной, что живые структуры многочисленными нитями связаны с ближайшим и дальним космосом,что нет необходимости прибегать к помощи сверхъестественного разума в объяс­нении происхождения жизни.

I Теория эволюции

Теория эволюции занимает особое место в изучении истории жизни. Эволюция подразумевает всеобщее посте­пенное развитие, упорядоченное и последовательное. При­менительно к живым организмам эволюцию можно опре­делить как развитие сложных организмов из предшеству­ющих, более простых организмов с течением времени.

История развития эволюционной теории показывает, что концепция непрерывности или постепенного развития более сложных видов из предшествующих, более простых форм возникла у ряда философов и естествоиспытателей еще до формального провозглашения вXIX в. эволюцион­ных гипотез.

2.1. Теория эволюции Ламарка

Французский биолог Ламарк в 1809 году выдвинул ги­потезу о механизме эволюции, в основе которой лежали две предпосылки: упражнение и неупражнение частей организ­ма и наследование приобретенных признаков. Изменения среды могут вести, по его мнению, к изменению форм по­ведения, что вызовет необходимость использовать некото­рые органы или структуры по-новому или более интенсивно (или перестать ими пользоваться). В случае интенсивно­го использования эффективность и (или) величина органа будет возрастать, а при неиспользовании может наступить его дегенерация и атрофия. Эти признаки, приобретенные индивидуумом в течение всей жизни, согласно Ламарку, наследуются, т. е. передаются потомкам.

С точки зрения ламаркизма, длина шеи и ноги жира­фа — результат того, что многие поколения его некогда коротконогих и короткошеих предков питались листьями деревьев, за которыми им приходилось тянуться все выше и выше. Незначительное удлинение шеи и ног, происходя­щее в каждом поколении, передавалось следующему поко­лению, пока эти части тела не достигли своей нынешней длины. Перепонки между пальцами у водоплавающих птиц и форму тела камбалы объясняли таким же образом. Пе­репонки возникли в результате постоянного раздвигания пальцев и растяжения кожи между ними при плавании в поисках пищи или для спасения от хищников, а уплощен­ное тело — из-за лежания на боку на мелководье. Хотя теория Ламарка подготовила почву для принятия эволю­ционной концепции, его взгляды на механизм изменения так и не получили широкого признания.

Однако Ламарк был прав, подчеркивая рольусловий жизни в возникновении фенотипных изменений у дан­ной особи. Например, занятия физкультурой увеличивают объем мышц, но, хотя эти приобретенные признаки затра­гивают фенотип, они не являются генетическими и, не ока­зывая влияния на генотип, не могут передаваться потом­ству.

Нотеория Ламарка была исторической предпосылкой для признания впоследствии наследования генетических особенностей при половом размножении.

Биохимическая эволюция - student2.ru

Наши рекомендации