Принцип суперпозиции электростатических полей
Рассмотрим метод определения значения и направления вектора напряженности Е в каждой точке электростатического поля, создаваемого системой неподвижных зарядов q1, q2, ..., Qn.
Опыт показывает, что к кулоновским силам применим рассмотренный в механике принцип независимости действия сил (см. §6), т.е. результирующая сила F, действующая со стороны поля на пробный заряд Q0, равна векторной сумме сил Fi, приложенных к нему со стороны каждого из зарядов Qi:
Согласно (79.1), F=Q0E и Fi,=Q0Ei, где Е—напряженность результирующего поля, а Еi — напряженность поля, создаваемого зарядом Qi. Подставляя последние выражения в (80.1), получим
Формула (80.2) выражает принцип суперпозиции (наложения) электростатических полей,согласно которому напряженность Е результирующего поля, создаваемого системой зарядов, равна геометрической сумме напряженностей полей, создаваемых в данной точке каждым из зарядов в отдельности.
Принцип суперпозиции позволяет рассчитать электростатические поля любой системы неподвижных зарядов, поскольку если заряды не точечные, то их можно всегда свести к совокупности точечных зарядов.
Принцип суперпозиции применим для расчета электростатического поля электрического диполя.
Электрический диполь. Электрический диполь— система двух равных по модулю разноименных точечных зарядов ( + Q, -Q), расстояние l между которыми значительно меньше расстояния до рассматриваемых точек поля. Вектор, направленный по оси диполя (прямой, проходящей через оба заряда) от отрицательного заряда к положительному и равный расстоянию между ними, называется плечом диполя l.Вектор
совпадающий по направлению с плечом диполя и равный произведению заряда
|Q| на плечо l, называется электрическим моментом диполя рилидипольным моментом(рис. 122).
Согласно принципу суперпозиции (80.2), напряженность Е поля диполя в произвольной точке
Е=Е+ + Е-,
где Е+ и Е- — напряженности полей, создаваемых соответственно положительным и отрицательным зарядами. Воспользовавшись этой формулой, рассчитаем напряженность поля на продолжении оси диполя и на перпендикуляре к середине его оси.
1. Напряженность поля на продолжении оси диполяв точке А (рис. 123). Как видно из рисунка, напряженность поля диполя в точке А направлена по оси диполя и по модулю равна
ЕA=Е+-Е-.
Обозначив расстояние от точки А до середины оси диполя через л, на основании формулы (79.2) для вакуума можно записать
Согласно определению диполя, l/2<<r, поэтому
2. Напряженность поля на перпендикуляре, восставленном к оси из его середины,в точке В (рис. 123). Точка В равноудалена от зарядов, поэтому
где r'— расстояние от точки В до середины плеча диполя. Из подобия равнобед-
ренных треугольников, опирающихся плечо диполя и вектор ев, получим
откуда
ЕB=Е+l/r'. (80.5)
Подставив в выражение (80.5) значение (80.4), получим
Вектор ЕB имеет направление, противоположное электрическому моменту диполя (вектор р направлен от отрицательного заряда к положительному).