Магнитный поток однородного
магнитного поля через площадку S
где α – угол между вектором В и
нормалью к площадке.
Закон электромагнитной индукции
где N – число витков контура.
Потокосцепление контура с током
где L – индуктивность контура.
Электродвижущая сила самоиндукции
Индуктивность соленоида
где V – объем соленоида,
n – число витков на единицу
длины соленоида.
Мгновенное значение силы тока в
цепи, обладающей сопротивлением R
и индуктивностью L
Энергия магнитного поля
Объемная плотность энергии
магнитного поля
Примеры решения задач
1. В углах при основании равнобедренного треугольника с боковой стороной 8 см расположены заряды q1 и q2. Определить силу, действующую на заряд 1 нКл, помещенный в вершине треугольника. Угол при вершине 1200. Рассмотреть случаи: а) q1 = q2 = 2 нКл; б) q1 = - q2 = 2 нКл.
Дано: |q1| = |q2| = 2 ∙ 10-9 Кл; q3 = 10-9 Кл; r = 0,08 м; α = 300; ε = 1.
Найти: F1, F2.
Решение. В соответствии с принципом суперпозиции поле каждого из зарядов q1 и q2 действует на заряд q1 независимо. Это значит, что на заряд q3 действуют силы (рис. 1,а)
Так как |q1| = |q2|, то |F13| = |F23|. Векторная сумма F = F1 + F2 является искомой величиной. Модуль силы определяется по теореме косинусов В случае одноименных зарядов q1 и q2 из рис. 1,а видно, что угол β = 1200, поэтому F1 = F13 = F23;
В случае разноименных зарядов q1 и q2 из рис. 1,б видно, что угол β = 600 и, следовательно,
Ответ: F1 = 2,8 мкН; F2 = 4,8 мкН.
2. Два равных отрицательных заряда по 9 нКл находятся в воде на расстоянии 8 см друг от друга. Определить напряженность и потенциал поля в точке, расположенной на расстоянии 5 см от зарядов.
Дано: q1 = q2 = -9 ∙ 10-9 Кл; ε = 81; r0 = 0,08 м; r1 = r2 = 0,05 м.
Найти: Е, φ.
Решение. Напряженность поля, создаваемого в точке А (рис. 2) зарядами q1 и q2 по принципу суперпозиции полей, равна векторной сумме напряженностей, создаваемых каждым из зарядов:
Е = Е1 + Е2. (1)
По теореме косинусов
(2)
Напряженность точечного заряда q
где ε – диэлектрическая проницаемость; ε0 – электрическая постоянная; r – расстояние от заряда до точки поля, в которой определяется его напряженность. Заряды q1 и q2 отрицательны, следовательно, векторы его Е1иЕ2направлены по линиям напряженности к зарядам. По условию заряды q1 = q2 расположены на одинаковом расстоянии от точки А, поэтому Е1 = Е2. Следовательно, формула (2) принимает вид Е = Е1 ∙ cos α, где cos α = h/r1,
Тогда напряженность в точке А
Потенциал φ, создаваемый системой точечных зарядов в данной точке поля, равен алгебраической сумме потенциалов, создаваемых каждым из зарядов Потенциал φ результирующего поля в точке А равен φ = φ1 + φ2. Потенциал поля, создаваемого точечным зарядом, Следовательно,
Ответ: Е = 480 В/м; φ = - 40 В.
3. Заряд 1 нКл переносится в воздухе из точки, находящейся на расстоянии 1 м от бесконечно длинной равномерно заряженной нити, в точку на расстоянии 10 см от нее. Определить работу, совершаемую против сил поля, если линейная плотность заряда нити 1 мкКл/м. Какая работа совершается на последних 10 см пути?
Дано: r0 = 0,1 м; r1 = 1 м; r2 = 0,2 м; q = 1 ∙ 10-9 Кл; ε = 1; τ = 1 ∙ 10-6 Кл/м.
Найти: А1, А2.
Решение. Работа внешней силы по перемещению заряда q из точки поля с потенциалом φi в точку с потенциалом φ0 равна
(1)
Бесконечно равномерно заряженная нить с линейной плотностью заряда τ создает аксиально – симметричное поле напряженностью Напряженность и потенциал этого поля связаны соотношением откуда Разность потенциалов точек поля на расстоянии ri и r0 от нити
(2)
Подставляя в формулу (1) найденное выражение для разности потенциалов из (2), определим работу, совершаемую внешними силами по перемещению заряда из точки, находящейся на расстоянии 1 м, до точки, расположенной на расстоянии 0,1 м от нити:
Вычислим на калькуляторе выражение по программе
1 Вп 9 /-/ × 1 Вп 6 /-/ × 10 ln ÷ 2 ÷ F π ÷ 8,85 ÷ 1 Вп 12 /-/ =
Показания индикатора: 4,14087 ∙ 10-5, т.е. 4,1∙ 10-5 Дж.
Работа по перемещению заряда на последних 10 см пути равна
Ответ: А1 = 4,1 ∙ 10-5 Дж; А2 = 1,25 ∙ 10-5 Дж .
4. К одной из обкладок плоского конденсатора прилегает стеклянная плоскопараллельная пластинка (ε1 = 7) толщиной 9 мм. После того как конденсатор отключили от источника напряжения 220 В и вынули стеклянную пластинку, между обкладками установилась разность потенциалов 976 В. Определить зазор между обкладками и отношение конечной и начальной энергии конденсатора.
Дано: U1 = 220 В; U2 = 976 В; d1 = 9 ∙ 10-3 м; ε1 = 7; ε2 = 1.
Найти: d0; W1/W2.
Решение. После отключения конденсатора и удаления стеклянной пластинки заряд на его обкладках остается неизменным, т.е. выполняется равенство
(1)
где С1 и С2 – электроемкости конденсаторов в начальном и конечном случае.
По условию конденсатор вначале является слоистым и его электроемкость определяется по формуле
(2)
где S – площадь обкладок; d0 – зазор между ними, d1 – толщина стеклянной пластинки; ε1 и ε2 – диэлектрические проницаемости стекла и воздуха соответственно.
После удаления стеклянной пластинки электроемкости конденсатора
(3)
Подставляя (2) и (3) в (1), получим
откуда
Начальная и конечная энергии конденсатора
Тогда отношение эти энергий W2/W1 = Учитывая (1), получим
Ответ: d0 = 1 ∙ 10-2 м; W2/W1 = 4,44.
5. Батарею из двух конденсаторов емкостью 400 и 500 пФ соединили последовательно и включили в сеть с напряжением 220 В. Потом батарею отключили от сети, конденсаторы разъединили и соединили параллельно обкладками, имеющими одноименные заряды. Каким будет напряжение на зажимах полученной батареи?
Дано: U1 = 220 В; С1 = 400 пФ; С2 = 500 пФ.
Найти: U2.
Решение. У последовательно соединенных конденсаторов заряды на обкладках равны по модулю q1 = q2 = q и заряд батареи равен заряду одного конденсатора. Емкость батареи последовательно соединенных конденсаторов определяется по формуле Для батареи из двух конденсаторов
а их заряд
(1)
При отключении конденсаторов их заряд сохраняется. У параллельно соединенных конденсаторов заряд батареи равен сумме емкостей зарядов конденсаторов q’ = q1 + q2, а емкость – сумме емкостей
Напряжение на зажимах батареи из двух параллельно соединенных конденсаторов
(2)
Подставляя (2) в (1), получаем
Ответ: U2 = 108,6 В.
6. Заряд конденсатора 1 мкКл, площадь пластин 100 см2, зазор между пластинками заполнен слюдой. Определить объемную плотность энергии поля конденсатора и силу притяжения пластин.
Дано: q = 10-6 Кл; S = 10-2 м2; ε = 6.
Найти: w; F.
Решение. Сила притяжения между двумя разноименно заряженными обкладками конденсатора
(1)
где Е – напряженность поля конденсатора; S – площадь обкладок конденсатора; ε – диэлектрическая проницаемость слюды; ε0 – электрическая постоянная.
Напряженность однородного поля плоского конденсатора
(2)
где σ = q/S – поверхностная плотность заряда. Подставляя (2) в (1), получаем
Объемная плотность энергии электрического поля
w = (3)
Подставляя (2) в (3), получаем
w = w =
Ответ: F = 0,94 Н; w = 94,2 Дж/м3.
7. В медном проводнике сечением 6 мм и длиной 5 м течет ток. За 1 мин в проводнике выделяется 18 Дж теплоты. Определить напряженность поля, плотность и силу электрического тока в проводнике.
Дано: S = 6 ∙ 10-6 м2; l = 5 м; t = 60 с; q = 18 Дж; ρ = 1,7 ∙10-8 Ом ∙ м.
Найти: E; j; J.
Решение. Для решения задачи используем закон Ома и Джоуля – Ленца. Закон Ома в дифференциальной форме имеет вид
j = γE, (1)
где j – плотность тока; E – напряженность поля; γ – удельная проводимость.
Закон Джоуля – Ленца
(2)
Здесь J – сила тока, t – время.
(3)
- сопротивление проводника, где ρ, l, S – удельное сопротивление, длина и площадь поперечного сечения проводника соответственно.
Силу тока J находим из (2) с учетом (3):
По определению, плотность тока равна j = J/S;
Напряженность поля в проводнике определим из (1), учитывая, что γ = 1/ρ.
Ответ: E = 1,3 ∙ 10-2 В/м; J = 4,6 А; j = 7,7 ∙ 105 А/м2 .
8. Внутреннее сопротивление аккумулятора 2 Ом. При замыкании его
одним резистором сила тока равна 4 А, при замыкании другим – 2 А. Во внешней цепи в обоих случаях выделяется одинаковая мощность. Определить электродвижущую силу аккумулятора и внешние сопротивления.
Дано: r = 2 Ом; J1 = 4 A; J2 = 2A; N1 = N2.
Найти: ξ; R1; R2.
Решение. Закон Ома для замкнутой (полной) цепи имеет вид
(1)
где r – внутреннее сопротивление источника тока; ξ – э. д. с. аккумулятора;
R1 и R2 – внешние сопротивления цепей.
Уравнения (1) представим в виде
(2)
Из равенства (2) следует, что
(3)
Мощность, выделяемая во внешней цепи в первом и во втором случаях, соответственно равна
Из условия равенства мощностей следует, что
(4)
Решая совместно уравнения (3) и (4), получаем
(5)
Подставляя (5) в (2), получаем
Ответ: ξ = 12 В; R1 = 1 Ом; R2 = 4 Ом.
9.Электродвижущая сила батареи равна 20 В. Коэффициент полезного действия батареи составляет 0,8 при силе тока 4 А. Чему равно внутреннее сопротивление батареи?
Дано: ξ = 20 В; η = 0,8; J = 4 A.
Найти: r.
Решение. Коэффициент полезного действия источника тока η равен отношению падения напряжения во внешней цепи к его электродвижущей силе.
(1)
откуда
(2)
Используя выражение закона Ома для замкнутой цепи получаем
(3)
Подставляя (2) в (3) и выполняя преобразования, находим
Ответ: r = 1 Ом.
10. По двум бесконечно длинным прямолинейным проводникам, находящимся на расстоянии 50 см друг от друга, в одном направлении текут токи J1 и J2 силой по 5 А. Между проводниками на расстоянии 30 см от первого расположен кольцевой проводник с током J3 силой 5 А (рис. 3). Радиус кольца 20 см. Определить индукцию и напряженность магнитного поля, создаваемого токами в центре кольцевого проводника.
Дано: J1 = J2 = J3 = J = 5 А; r1 = 0,2 м; r3 = 0,2 м.
Найти: В; Н.
Решение. В соответствии с принципом суперпозиции индукция результирующего магнитного поля в точке А равна
В = В1+ В2+ В3, (1)
где В1и В2 – индукции полей, создаваемых соответственно токами J1 и J2, направленными за плоскость рисунка; В3 – индукция поля, создаваемая кольцевым током. Как видно из рис. 3, векторы В1и В2 направлены по одной прямой в противоположные стороны, поэтому их сумма В1+ В2= В12равна по модулю
(2)
Индукция поля, создаваемого бесконечно длинным проводником с током,
(3)
где μ0 – магнитная постоянная; μ – магнитная проницаемость среды (для воздуха μ = 1); r1, r2 – расстояние от проводников до центра кольца. Подставляя (3) в (2), получаем
(4)
Индукция поля, создаваемого кольцевым проводником с током,
(5)
где r3 – радиус кольца.
Как видно из рис. 3, векторы В12 и В3 взаимно перпендикулярны, поэтому или, учитывая выражения (4) и (5), имеем
Вычислим на калькуляторе выражение
по программе
[( 0,3 - 0,2 )] × = х→П F π × = × 0,3 F х2 = × 0,2 F х2 = F х→П ÷ П→х = П→х 1 ÷ 0,2 F х2 = F х→П + П→х = √ х→П 12,56 ВП 7 /-/ х 5 ÷ 2 = F х→П × П→х =
Показания индикатора: 1,57111 ∙ 10-5 , т.е. 15,67 мкТл.
Напряженность магнитного поля
Ответ: В = 15,7 мкТл; Н = 12,5 А.
11. Электрон, пройдя ускоряющую разность потенциалов 88 кВ, влетает в однородное магнитное поле перпендикулярно его линиям индукции. Индукция поля равна 0,01 Тл. Определить радиус траектории электрона.
Дано: U = 88 кВ; В = 0,01 Тл; е = 1,6 ∙ 10-19 Кл.
Найти: r.
Решение. В магнитном поле с индукцией В на электрон, движущийся со скоростью v перпендикулярно В, действует сила Лоренца
(1)
которая обусловливает центростремительное ускорение электрона при его движении по окружности:
(2)
где m – масса электрона; е – его заряд; r – радиус траектории его движения.
Пройдя ускоряющую разность потенциалов U, электрон приобретает кинетическую энергию , равную работе А сил электрического поля Отсюда находим скорость электрона:
(3)
Из уравнения (2) с учетом (3) найдем радиус траектории:
Ответ: r = 0,1 м.
12. Соленоид длиной 20 см и диаметром 4 см имеет плотную трехслойную обмотку из провода диаметром 0,1 мм. По обмотке соленоида течет ток 0,1 А. Зависимость В = f(H) для материала сердечника приведена на рис. 4. Определить напряженность и индукцию поля в соленоиде, магнитную проницаемость сердечника, индуктивность соленоида, энергию и объемную плотность энергии поля соленоида.
Дано: l = 0,2 м; D = 0,04 м; N = 3; d = 1 ∙ 10-4 м; J = 0,1 А.
Найти: H; B; μ; L; W; w.
Решение. Поле внутри соленоида можно считать однородным. В этом случае напряженность поля
(1)
где J – сила тока в обмотке;
(2)
- число витков, приходящихся на единицу длины соленоида; N – число слоев обмотки; d – диаметр провода. Тогда
По графику В = f(H) находим, что напряженности 3000 А/м соответствует индукция 1,7 Тл. Используя связь между индукцией и напряженностью
(3)
определим магнитную проницаемость
Индуктивность соленоида
(4)
где l – длина, S = πD2/4 – площадь поперечного сечения соленоида. Учитывая (2), получаем
(5)
Объемная плотность энергии магнитного поля
Энергия магнитного поля соленоида
(6)
или
(7)
Подставляя числовые данные в (7), получаем
Ответ: H = 3000 А/м; B = 1,7 Тл; μ = 450; L = 128 Гн;
w = 2,55 кДж/м3; W = 0,64 Дж.
13. На соленоид (см. условие и решение задачи 12) надето изолированное кольцо того же диаметра. Определить электродвижущую силу индукции в кольце и электродвижущую силу самоиндукции в соленоиде, если за 0,01 с ток в его обмотке равномерно снижается до нуля.
Дано: B = 1,7 Тл; D = 0,04 м; J1 = 0,1 А; L = 128 Гн; Δt = 10-2 с; J2 = 0.
Найти: ξi, ξs.
Решение. По условию за время Δt = 0,01 с сила тока в обмотке соленоида равномерно уменьшается от 0,1 А до нуля, поэтому магнитный поток, пронизывающий площадь кольца S = πD2/4, уменьшается от Ф1 = BS до Ф2 = 0. Электродвижущая сила индукции, возникающая в кольце,
Электродвижущая сила самоиндукции ξs, возникающая в соленоиде при выключении тока в нем, Так как при выключении сила тока уменьшается до нуля равномерно, то
Тогда
Ответ: ξi = 0,21 В, ξs = 1280 В.
14.Виток радиусом 5 см с током 1 А помещен в однородное магнитное поле напряженностью 5000 А/м так, что нормаль к витку составляет угол 600 с направлением поля. Какую работу совершат силы поля при повороте витка в устойчивое положение?
Дано: r = 0,05 м; J = 1 А; Н = 5000 А/м; α = 600.
Найти: А.
Решение. Работа А при повороте витка с током J в магнитном поле
(1)
Здесь ΔФ = Ф2 – Ф1 – изменение магнитного потока сквозь площадь витка S = πr2;
Ф1 = B ∙ S ∙cos α – магнитный поток, пронизывающий виток в начальном положении, где α – угол между векторами n и В.
Устойчивым положением витка в магнитном поле является такое поле, при котором направление нормали к нему совпадает с вектором индукции, т.е. cos α = 1. Следовательно, Ф2 = B ∙ S. Таким образом, ΔФ = Вπr2∙ (1 - cos α). Учитывая, что В = μμ0Н, имеем
(2)
Подставляя (2) в (1), получаем
Ответ: А = 2,46 ∙ 10-5 Дж.
КОНТРОЛЬНАЯ РАБОТА №2
1. В вершинах квадрата со стороной 0,1 м расположены равные одноименные заряды. Потенциал создаваемого ими поля в центре квадрата равен 500 В. Определить заряд.
2. В вершинах квадрата со стороной 0,5 м расположены заряды одинаковой величины. В случае, когда два соседних заряда положительные, а два других – отрицательные, напряженность поля в центре квадрата равна 144 В/м. Определять заряд.
3. В вершинах квадрата со стороной 0,1 м помещены заряды по 0,1 нКл. Определить напряженность и потенциал поля в центре квадрата, если один из зарядов отличается по знаку от остальных.
4. Пространство между двумя параллельными бесконечными
плоскостями с поверхностной плотностью зарядов + 5 ∙ 10-8 и - 9 ∙ 10-8 Кл/м2 заполнено стеклом. Определить напряженность поля: а) между плоскостями; б) вне плоскостей.
5. На расстоянии 8 см друг от друга в воздухе находятся два заряда по 1 нКл. Определить напряженность и потенциал поля в точке, находящейся на расстоянии 5 см от зарядов.
6. Две параллельные плоскости одноименно заряжены с поверхностной плотностью зарядов 2 и 4 нКл/м2. Определить напряженность поля: а) между плоскостями; б) вне плоскостей.
7. Если в центр квадрата, в вершинах которого находятся заряды по +2 нКл, поместить отрицательный заряд, то результирующая сила, действующая на каждый заряд, будет равна нулю. Вычислить числовое значение отрицательного заряда.
8. Заряды по 1 нКл помещены в вершинах равностороннего треугольника со стороной 0,2 м. Равнодействующая сил, действующих на четвертый заряд, помещенный на середине одной из сторон треугольника, равна 0,6 мкН. Определить этот заряд, напряженность и потенциал поля в точке его расположения.
9. Два шарика массой по 2 мг подвешены в общей точке на нитях длиной 0,5 м. Шарикам сообщили заряд и нити разошлись на угол 90°. Определить напряженность и потенциал поля в точке подвеса шарика.
10. Два одинаковых заряда находятся в воздухе на расстоянии 0,1 м друг от друга. Напряженность поля в точке, удаленной на расстоянии 0,06 м от одного и 0,08 м от другого заряда, равна 10 кВ/м. Определить потенциал поля в этой точке и значение зарядов.
11. Пылинка массой 8 ∙ 10-15 кг удерживается в равновесии между горизонтально расположенными обкладками плоского конденсатора. Разность потенциалов между обкладками 490 В, а зазор между ними 1 см. Определить, во сколько раз заряд пылинки больше элементарного заряда.
12. В поле бесконечной равномерно заряженной плоскости с поверхностной плотностью заряда 10 мкКл/м2 перемещается заряд из точки, находящейся на расстояния 0,1 м от плоскости, в точку на расстояния 0,5 м от нее. Определить заряд, если при этом совершается работа 1 мДж.
13. Какую работу нужно совершить, чтобы заряды 1 и 2 нКл, находившиеся на расстоянии 0,5 м, сблизились до 0,1 м?
14. Поверхностная плотность заряда бесконечной равномерно заряженной плоскости равна 30 нКл/м2. Определить поток вектора напряженности через поверхность сферы диаметром 15 см, рассекаемой этой плоскостью пополам.
15. Заряд 1 нКл переносится из бесконечности в точку, находящуюся на расстоянии 0,1 м от поверхности металлической сферы радиусом 0,1 м, заряженной с поверхностной плотностью 10-5 Кл/м2. Определить работу перемещения заряда.
16. Заряд 1 нКл притянулся к бесконечной плоскости, равномерно заряженной с поверхностной плотностью 0,2 мкКл/м2. На каком расстоянии от плоскости находился заряд, если работа сил поля по его перемещению равна 1 мкДж?
17. Какую работу совершают силы поля, если одноименные заряды 1 и 2 нКл, находившиеся на расстоянии 1 см, разошлись до расстояния 10 см?
18. Со скоростью 2 ∙ 107 м/с электрон влетает в пространство между обкладками плоского конденсатора в середине зазора в направлении, параллельном обкладкам. При какой минимальной разности потенциалов на обкладках электрон не вылетит из конденсатора, если длина конденсатора 10 см, а расстояние между его обкладками 1 см?
19. Заряд – 1 нКл переместился в поле заряда + 1,5 нКл из точки с потенциалом 100 В в точку с потенциалом 600 В. Определить работу сил поля и расстояние между этими точками.
20. Заряд 1 нКл находится на расстояния 0,2 м от бесконечно длинной равномерно заряженной нити. Под действием поля нити заряд перемещается на 0,1 м. Определить линейную плотность заряда нити, если работа сил поля равна 0,1 мкДж.
21. Конденсатор с парафиновым диэлектриком заряжен до разности потенциалов 150 В. Напряженность поля 6 ∙ 106 В/м, площадь пластин 6 см2. Определить емкость конденсатора и поверхностную плотность заряда на обкладках.
22.Вычислить емкость батареи, состоящей из трех конденсаторов емкостью 1 мкФ каждый, при всех возможных случаях их соединения.
23. Заряд на каждом из двух последовательно соединенных конденсаторов емкостью 18 и 10 пкФ равен 0,09 нКл. Определить напряжение: а) на батарее конденсаторов; б) на каждом конденсаторе.
24. Конденсатор емкостью 6 мкФ последовательно соединен с конденсатором неизвестной емкости и они подключены к источнику постоянного напряжения 12 В. Определить емкость второго конденсатора и напряжения на каждом конденсаторе, если заряд батареи 24 мкКл.
25. Два конденсатора одинаковой емкости по 3 мкФ заряжены один до напряжения 100 В, а другой – до 200 В. Определять напряжение между обкладками конденсаторов, если их соединить параллельно: а) одноименно; б) разноименно заряженными обкладками.
26. Плоский воздушный конденсатор заряжен до разности потенциалов 300 В. Площадь пластин 1 см2, напряженность поля в зазоре между ними 300 кВ/м. Определить поверхностную плотность заряда на пластинах, емкость и энергию конденсатора.
27. Найти объемную плотность энергии электрического поля, создаваемого заряженной металлической сферой радиусом 5 см на расстоянии 5 см от ее поверхности, если поверхностная плотность заряда на ней 2 мкКл/м2.
28. Площадь пластин плоского слюдяного конденсатора 1,1 см2, зазор между ними 3 мм. При разряде конденсатора выделилась энергия 1 мкДж. До какой разности потенциалов был заряжен конденсатор?
29. Энергия плоского воздушного конденсатора 0,4 нДж, разность потенциалов на обкладках 600 В, площадь пластин 1 см2. Определить расстояние между обкладками, напряженность и объемную плотность энергии поля конденсатора.
30. Под действием силы притяжения 1 мН диэлектрик между обкладками конденсатора находится под давлением 1 Па. Определить энергию и объемную плотность энергии поля конденсатора, если расстояние между его обкладками 1 мм.
31. Плотность тока в никелиновом проводнике длиной 25 м равна 1 МА/м2. Определить разность потенциалов на концах проводника.
32. Определить плотность тока, текущего по проводнику длиной 5 м, если на концах его поддерживается разность потенциалов 2 В. Удельное сопротивление материала 2 мкОм ∙ м.
33. Напряжение на концах проводника сопротивлением 5 Ом за 0,5 с равномерно возрастает от 0 до 20 В. Какой заряд проходит через проводник за это время?
34. Температура вольфрамовой нити электролампы 2000 °С, диаметр 0,02 мм, сила тока в ней 4 А. Определить напряженность поля в нити.
35. На концах никелинового проводника длиной 5 м поддерживается разность потенциалов 12 В. Определить плотность тока в проводнике, если его температура 540 °С.
36. Внутреннее сопротивление аккумулятора 1 Ом. При силе тока 2 А его к. п. д. равен 0,8. Определить электродвижущую силу аккумулятора.
37. Определить электродвижущую силу аккумуляторной батареи, ток короткого замыкания которой 10 А, если при подключении к ней резистора сопротивлением 2 Ом сила тока в цепи равна 1 А.
38. Электродвижущая сила аккумулятора автомобиля 12 В. При силе тока 3 А его к. п. д. равен 0,8. Определить внутреннее сопротивление аккумулятора.
39. К источнику тока подключают один раз резистор сопротивлением 1 Ом, другой раз – 4 Ом. В обоих случаях на резисторах за одно и то же время выделяется одинаковое количество теплоты. Определить внутреннее сопротивление источника тока.
40. Два одинаковых источника тока соединены в одном случае последовательно, в другом – параллельно и замкнуты на внешнее сопротивление 1 Ом. При каком внутреннем сопротивлении источника сила тока во внешней цепи будет в обоих случаях одинаковой?
41. Два бесконечно длинных прямолинейных проводника с токами 6 и 8 А расположены перпендикулярно друг другу. Определить индукцию и напряженность магнитного поля на середине кратчайшего расстояния между проводниками, равного 20 см.
42. По двум бесконечно длинным прямолинейным параллельным проводникам, расстояние между которыми 15 см, в одном направлении текут токи 4 и 6 А. Определить расстояние от проводника с меньшим током до геометрического места точек, в котором напряженность магнитного поля равна нулю.
43. Решить задачу 42 для случая, когда токи текут в противоположных направлениях.