Зависимость температуры кипения от давления
Использование явления охлаждения жидкости при ее испарении; зависимости температуры кипения воды от давления.
При парообразовании вещество переходит из жидкого состояния в газообразное (пар). Существуют два вида парообразования: испарение и кипение.
Испарение — это парообразование, происходящее со свободной поверхности жидкости.
Как происходит испарение? Мы знаем, что молекулы любой жидкости находятся в непрерывном и беспорядочном движении, причем одни из них движутся быстрее, другие — медленнее. Вылететь наружу им мешают силы притяжения друг к другу. Если, однако, у поверхности жидкости окажется молекула с достаточно большой кинетической энергией, то она сможет преодолеть силы межмолекулярного притяжения и вылетит из жидкости. То же самое повторится с другой быстрой молекулой, со второй, третьей и т. д. Вылетая наружу, эти молекулы образуют над жидкостью пар. Образование этого пара и есть испарение.
Поскольку при испарении из жидкости вылетают наиболее быстрые молекулы, средняя кинетическая энергия оставшихся в жидкости молекул становится все меньше и меньше. В результате этоготемпература испаряющейся жидкости понижается: жидкость охлаждается. Именно поэтому, в частности, человек в мокрой одежде чувствует себя холоднее, чем в сухой (особенно при ветре).
В то же время всем известно, что если налить воду в стакан и оставить на столе, то, несмотря на испарение, она не будет непрерывно охлаждаться, становясь все более и более холодной, пока не замерзнет. Что же этому мешает? Ответ очень простой: теплообмен воды с окружающим стакан теплым воздухом.
Охлаждение жидкости при испарении более заметно в том случае, когда испарение происходит достаточно быстро (так что жидкость не успевает восстановить свою температуру благодаря теплообмену с окружающей средой). Быстро испаряются летучие жидкости, у которых силы межмолекулярного притяжения малы, например эфир, спирт, бензин. Если капнуть такой жидкостью на руку, мы ощутим холод. Испаряясь с поверхности руки, такая жидкость будет охлаждаться и отбирать от нее некоторое количество теплоты.
Быстроиспаряющиеся вещества находят широкое применение в технике. Например, в космической технике такими веществами покрывают спускаемые аппараты. При прохождении через атмосферу планеты корпус-аппарата в результате трения нагревается, и покрывающее его вещество начинает испаряться. Испаряясь, оно охлаждает космический аппарат, спасая его тем самым от перегрева.
Охлаждение воды при ее испарении используется также в приборах, служащих для измерения влажности воздуха,— психрометрах (от греческого «психрос» — холодный). Психрометр состоит из двух термометров. Один из них (сухой) показывает температуру воздуха, а другой (резервуар которого обвязан батистом, опущенным в воду) — более низкую температуру, обусловленную интенсивностью испарения с влажного батиста. Чем суше воздух, влажность которого измеряется, тем сильнее испарение и потому тем ниже показания смоченного термометра. И наоборот, чем больше влажность воздуха, тем менее интенсивно идет испарение и потому тем более высокую температуру показывает этот термометр. На основе показаний сухого и увлажненного термометров с помощью специальной (психрометрической) таблицы определяют влажность воздуха, выраженную в процентах. Наибольшая влажность составляет 100% (при такой влажности воздуха на предметах появляется роса). Для человека наиболее благоприятной считается влажность в пределах от 40 до 60%.
С помощью простых опытов легко установить, что скорость испарения увеличивается с ростом температуры жидкости, а также при увеличении площади ее свободной поверхности и при наличии ветра.
Почему при наличии ветра жидкость испаряется быстрее? Дело в том, что одновременно с испарением на поверхности жидкости происходит и обратный процесс — конденсация. Конденсация происходит из-за того, что часть молекул пара, беспорядочно перемещаясь над жидкостью, снова возвращается в нее. Ветер же уносит вылетевшие из жидкости молекулы и не дает им возвращаться назад.
Конденсация может происходить и тогда, когда пар не соприкасается с жидкостью. Именно конденсацией, например, объясняется образование облаков: молекулы водяного пара, поднимающегося над землей, в более холодных слоях атмосферы группируются в мельчайшие капельки воды, скопления которых и представляют собой облака. Следствием конденсации водяного пара в атмосфере являются также дождь и роса.
Зависимость температуры кипения от давления
Температура кипения воды равна 100°С; можно подумать, что это неотъемлемое свойство воды, что вода,где бы и в каких условиях она ни находилась, всегда будет кипеть при 100°С.
Но это не так, и об этом прекрасно осведомлены жители высокогорных селений.
Вблизи вершины Эльбруса имеется домик для туристов и научная станция. Новички иногда удивляются, "как трудно сварить яйцо в кипятке" или "почему кипяток не обжигает". В этих условиях им указывают, что вода кипит на вершине Эльбруса уже при 82°С.
В чем же тут дело? Какой физический фактор вмешивается в явление кипения? Какое значение имеет высота над уровнем моря?
Этим физическим фактором является давление, действующее на поверхность жидкости. Не нужно забираться на вершину горы, чтобы проверить справедливость сказанного.
Помещая подогреваемую воду под колокол и накачивая или выкачивая оттуда воздух, можно убедиться, что температура кипения растет при возрастании давления и падает при его уменьшении.
Вода кипит при 100°С только при определенном давлении - 760 мм рт. ст. (или 1 атм).
Кривая температуры кипения в зависимости от давления показана на рис. 4.2. На вершине Эльбруса давление равно 0,5 атм, этому давлению и соответствует температура кипения 82°С.
Рис. 4.2
А вот водой, кипящей при 10-15 мм рт. ст., можно освежиться в жаркую погоду. При этом давлении температура кипения упадет до 10-15°С.
Можно получить даже "кипяток", имеющий температуру замерзающей воды. Для этого придется снизить давление до 4,6 мм рт. ст.
Интересную картину можно наблюдать, если поместить открытый сосуд с водой под колокол и откачивать воздух. Откачка заставит воду закипеть, но кипение требует тепла. Взять его неоткуда, и воде придется отдать свою энергию. Температура кипящей воды начнет падать, но так как откачка продолжается, то падает и давление. Поэтому кипение не прекратится, вода будет продолжать охлаждаться и в конце концов замерзнет.
Такое кипение холодной воды происходит не только при откачке воздуха. Например, при вращении гребного корабельного винта давление в быстро движущемся около металлической поверхности слое воды сильно падает и вода в этом слое закипает, т. е. в ней появляются многочисленные наполненные паром пузырьки. Это явление называется кавитацией (от латинского слова cavitas - полость).
Снижая давление, мы понижаем температуру кипения. А увеличивая его? График, подобный нашему, отвечает на этот вопрос. Давление в 15 атм может задержать кипение воды, оно начнется только при 200°С, а давление в 80 атм заставит воду закипеть лишь при 300°С.
Итак, определенному внешнему давлению соответствует определенная температура кипения. Но это утверждение можно и "перевернуть", сказав так: каждой температуре кипения воды соответствует свое определенное давление. Это давление называется упругостью пара.
Кривая, изображающая температуру кипения в зависимости от давления, является одновременно и кривой упругости пара в зависимости от температуры.
Цифры, нанесенные на график температуры кипения (или на график упругости пара), показывают, что упругость пара меняется очень резко с изменением температуры. При 0°С (т. е. 273 К) упругость пара равна 4,6 мм рт. ст., при 100°С (373 К) она равна 760 мм рт. ст., т. е. возрастает в 165 раз. При повышении температуры вдвое (от 0°С, т. е. 273 К, до 273°С, т. е. 546 К) упругость пара возрастает с 4,6 мм рт. ст. почти до 60 атм, т. е. примерно в 10 000 раз.
Поэтому, напротив, температура кипения меняется с давлением довольно медленно. При изменении давления вдвое от 0,5 атм до 1 атм температура кипения возрастает от 82°С (355 К) до 100°С (373 К) и при изменении вдвое от 1 до 2 атм - от 100°С (373 К) до 120°С (393 К).
Та же кривая, которую мы сейчас рассматриваем, управляет и конденсацией (сгущением) пара в воду.
Превратить пар в воду можно либо сжатием, либо охлаждением.
Как во время кипения, так и в процессе конденсации точка не сдвинется с кривой, пока превращение пара в воду или воды в пар не закончится полностью. Это можно сформулировать еще и так: в условиях нашей кривой и только при этих условиях возможно сосуществование жидкости и пара. Если при этом не подводить и не отнимать тепла, то количества пара и жидкости в закрытом сосуде будут оставаться неизменными. Про такие пар и жидкость говорят, что они находятся в равновесии, и пар, находящийся в равновесии со своей жидкостью, называют насыщенным.
Кривая кипения и конденсации имеет, как мы видим, еще один смысл: это кривая равновесия жидкости и пара. Кривая равновесия делит поле диаграммы, на две части. Влево и вверх (к большим температурам и меньшим давлениям) расположена область устойчивого состояния пара. Вправо и вниз - область устойчивого состояния жидкости.
Кривая равновесия пар - жидкость, т. е. кривая зависимости температуры кипения от давления или, что то же самое, упругости пара от температуры, примерно одинакова для всех жидкостей. В одних случаях изменение может быть несколько более резким, в других - несколько более медленным, но всегда упругость пара быстро растет с увеличением температуры.
Уже много раз мы пользовались словами "газ" и "пар". Эти два слова довольно равноправны. Можно сказать: водяной газ есть пар воды, газ кислород есть пар кислородной жидкости. Все же при пользовании этими двумя словами сложилась некоторая привычка. Так как мы привыкли к определенному относительно небольшому интервалу температур, то слово "газ" мы применяем обычно к тем веществам, упругость пара которых при обычных температурах выше атмосферного давления. Напротив, о паре мы говорим, когда при комнатной температуре и давлении атмосферы вещество более устойчиво в виде жидкости.