Большой взрыв, черные дыры и эволюция вселенной 4 страница

Мы не располагаем никакими научными аргументами за или против второй гипотезы Фридмана. Столетия назад христианская церковь признала бы его еретическим, так как церковная доктрина постулировала, что мы занимаем особое место в центре мироздания. Но сегодня мы принимаем это предположение Фридмана по едва ли не противоположной причине, из своего рода скромности: нам показалось бы совершенно удивительным, если бы Вселенная выглядела одинаково во всех направлениях только для нас, но не для других наблюдателей во Вселенной!

Во фридмановской модели Вселенной все галактики удаляются друг от друга. Это напоминает расползание цветных пятен на поверхности надуваемого воздушного шара. С ростом размеров шара увеличиваются и расстояния между любыми двумя пятнами, но при этом ни одно из пятен нельзя считать центром расширения. Более того, если радиус воздушного шара постоянно растет, то чем дальше друг от друга находятся пятна на его поверхности, тем быстрее они будут удаляться при расширении. Допустим, что радиус воздушного шара удваивается каждую секунду. Тогда два пятна, разделенные первоначально расстоянием в один сантиметр, через секунду окажутся уже на расстоянии двух сантиметров друг от друга (если измерять вдоль поверхности воздушного шара), так что их относительная скорость составит один сантиметр в секунду. С другой стороны, пара пятен, которые были отделены десятью сантиметрами, через секунду после начала расширения разойдутся на двадцать сантиметров, так что их относительная скорость будет десять сантиметров в секунду (рис. 19). Точно так же в модели Фридмана скорость, с которой любые две галактики удаляются друг от друга, пропорциональна расстоянию между ними. Тем самым модель предсказывает, что красное смещение галактики должно быть прямо пропорционально ее удаленности от нас — это та самая зависимость, которую позднее обнаружил Хаббл. Хотя Фридману удалось предложить удачную модель и предвосхитить результаты наблюдений Хаббла, его работа оставалась почти неизвестной на Западе, пока в 1935 г . аналогичная модель не была предложена американским физиком Говардом Робертсоном и британским математиком Артуром Уокером уже по следам открытого Хабблом расширения Вселенной.

Рис. 19. Расширяющаяся Вселенная воздушного шара.

Вследствие расширения Вселенной галактики удаляются друг от друга. С течением времени расстояние между далекими звездными островами увеличивается сильнее, чем между близкими галактиками, подобно тому как это происходит с пятнами на раздувающемся воздушном шаре. Поэтому наблюдателю из любой галактики скорость удаления другой галактики кажется тем больше, чем дальше она расположена.

Фридман предложил только одну модель Вселенной. Но при сделанных им предположениях уравнения Эйнштейна допускают три класса решений, то есть существует три разных типа фридмановских моделей и три различных сценария развития Вселенной.

Первый класс решений (тот, который нашел Фридман) предполагает, что расширение Вселенной происходит достаточно медленно, так что притяжение между галактиками постепенно замедляет и в конечном счете останавливает его. После этого галактики начинают сближаться, а Вселенная — сжиматься. В соответствии со вторым классом решений Вселенная расширяется настолько быстро, что гравитация лишь немного замедлит разбегание галактик, но никогда не сможет остановить его. Наконец, есть третье решение, согласно которому Вселенная расширяется как раз с такой скоростью, чтобы только избежать схлопывания. Со временем скорость разлета галактик становится все меньше и меньше, но никогда не достигает нуля.

Удивительная особенность первой модели Фридмана — то, что в ней Вселенная не бесконечна в пространстве, но при этом нигде в пространстве нет никаких границ. Гравитация настолько сильна, что пространство свернуто и замыкается на себя. Это до некоторой степени схоже с поверхностью Земли, которая тоже конечна, но не имеет границ. Если двигаться по поверхности Земли в определенном направлении, то никогда не натолкнешься на непреодолимый барьер или край света, но в конце концов вернешься туда, откуда начал путь. В первой модели Фридмана пространство устроено точно так же, но в трех измерениях, а не в двух, как в случае поверхности Земли. Идея о том, что можно обогнуть Вселенную и вернуться к исходной точке, хороша для научной фантастики, но не имеет практического значения, поскольку, как можно доказать, Вселенная сожмется в точку прежде, чем путешественник вернется в к началу своего пути. Вселенная настолько велика, что нужно двигаться быстрее света, чтобы успеть закончить странствие там, где вы его начали, а такие скорости запрещены (теорией относительности. — Перев.). Во второй модели Фридмана пространство также искривлено, но иным образом. И только в третьей модели крупномасштабная геометрия Вселенной плоская (хотя пространство искривляется в окрестности массивных тел).

Какая из моделей Фридмана описывает нашу Вселенную? Остановится ли когда-нибудь расширение Вселенной, и сменится ли оно сжатием, или Вселенная будет расширяться вечно?

Оказалось, что ответить на этот вопрос труднее, чем поначалу представлялось ученым. Его решение зависит главным образом от двух вещей — наблюдаемой ныне скорости расширения Вселенной и ее сегодняшней средней плотности (количества материи, приходящегося на единицу объема пространства). Чем выше текущая скорость расширения, тем б о льшая гравитация, а значит, и плотность вещества, требуется, чтобы остановить расширение. Если средняя плотность выше некоторого критического значения (определяемого скоростью расширения), то гравитационное притяжение материи сможет остановить расширение Вселенной и заставить ее сжиматься. Такое поведение Вселенной отвечает первой модели Фридмана. Если средняя плотность меньше критического значения, тогда гравитационное притяжение не остановит расширения и Вселенная будет расширяться вечно — как во второй фридмановской модели. Наконец, если средняя плотность Вселенной в точности равна критическому значению, расширение Вселенной будет вечно замедляться, все ближе подходя к статическому состоянию, но никогда не достигая его. Этот сценарий соответствует третьей модели Фридмана.

Так какая же модель верна? Мы можем определить нынешние темпы расширения Вселенной, если измерим скорость удаления от нас других галактик, используя эффект Доплера. Это можно сделать очень точно. Однако расстояния до галактик известны не очень хорошо, поскольку мы можем измерять их только косвенно. Поэтому нам известно лишь то, что скорость расширения Вселенной составляет от 5 до 10% за миллиард лет. Еще более расплывчаты наши знания о нынешней средней плотности Вселенной. Так, если мы сложим массы всех видимых звезд в нашей и других галактиках, сумма будет меньше сотой доли того, что требуется для остановки расширения Вселенной, даже при самой низкой оценке скорости расширения.

Но это далеко не все. Наша и другие галактики должны содержать большое количество некой «темной материи», которую мы не можем наблюдать непосредственно, но о существовании которой мы знаем благодаря ее гравитационному воздействию на орбиты звезд в галактиках. Возможно, лучшим свидетельством существования темной материи являются орбиты звезд на периферии спиральных галактик, подобных Млечному Пути. Эти звезды обращаются вокруг своих галактик слишком быстро, чтобы их могло удерживать на орбите притяжение одних только видимых звезд галактики. Кроме того, большинство галактик входят в состав скоплений, и мы можем аналогичным образом сделать вывод о присутствии темной материи между галактиками в этих скоплениях по ее влиянию на движение галактик. Фактически количество темной материи во Вселенной значительно превышает количество обычного вещества. Если учесть всю темную материю, мы получим приблизительно десятую часть от той массы, которая необходима для остановки расширения.

Нельзя, однако, исключать существования других, еще не известных нам форм материи, распределенных почти равномерно повсюду во Вселенной, что могло бы повысить ее среднюю плотность. Например, существуют элементарные частицы, называемые нейтрино, которые очень слабо взаимодействуют с веществом и которые чрезвычайно трудно обнаружить.

(В одном из новых нейтринных экспериментов используется подземный резервуар, заполненный 50 тысячами тонн воды.) Считается, что нейтрино невесомы и поэтому не вызывают гравитационного притяжения[10].

Однако исследования нескольких последних лет свидетельствуют, что нейтрино все же обладает ничтожно малой массой, которую ранее не удавалось зафиксировать. Если нейтрино имеют массу, они могли бы быть одной из форм темной материи. Тем не менее, даже с учетом такой темной материи, во Вселенной, похоже, гораздо меньше вещества, чем необходимо для остановки ее расширения. До недавнего времени большинство физиков сходилось на том, что ближе всего к реальности вторая модель Фридмана.

Но затем появились новые наблюдения. За последние несколько лет разные группы исследователей изучали мельчайшую рябь того микроволнового фона, который обнаружили Пензиас и Вильсон. Размер этой ряби может служить индикатором крупномасштабной структуры Вселенной. Ее характер, похоже, указывает, что Вселенная все-таки плоская (как в третьей модели Фридмана)! Но поскольку суммарного количества обычной и темной материи для этого недостаточно, физики постулировали существование другой, пока не обнаруженной, субстанции — темной энергии.

И словно для того, чтобы еще больше усложнить проблему, недавние наблюдения показали, что расширение Вселенной не замедляется, аускоряется. Вопреки всем моделям Фридмана! Это очень странно, поскольку присутствие в пространстве вещества — высокой или низкой плотности — может только замедлять расширение. Ведь гравитация всегда действует как сила притяжения. Ускорение космологического расширения — это все равно что бомба, которая собирает, а не рассеивает энергию после взрыва. Какая сила ответственна за ускоряющееся расширение космоса? Ни у кого нет надежного ответа на этот вопрос. Однако, возможно, Эйнштейн все-таки был прав, когда ввел в свои уравнения космологическую постоянную (и соответствующий ей эффект антигравитации).

С развитием новых технологий и появлением превосходных космических телескопов мы стали то и дело узнавать о Вселенной удивительные вещи. И вот хорошая новость: теперь нам известно, что Вселенная продолжит в ближайшее время расширяться с постоянно возрастающей скоростью, а время обещает длиться вечно, по крайней мере для тех, кому хватит благоразумия не угодить в черную дыру. Но что же было в самые первые мгновения? Как начиналась Вселенная, и что заставило ее расширяться?

Глава восьмая

БОЛЬШОЙ ВЗРЫВ, ЧЕРНЫЕ ДЫРЫ И ЭВОЛЮЦИЯ ВСЕЛЕННОЙ

В модели Фридмана четвертое измерение Вселенной — время, — как и пространство, имеет ограниченную протяженность. Оно подобно отрезку, имеющему два конца или две границы. Так что у времени есть конец и есть начало. Фактически все решения уравнений Эйнштейна, полученные для того количества материи, которое мы наблюдаем во Вселенной, имеют одну очень важную общую характеристику: некогда в прошлом (приблизительно 13,7 миллиарда лет назад) расстояние между соседними галактиками должно было равняться нулю. Другими словами, вся Вселенная была сжата в точку нулевого размера, сферу с нулевым радиусом. Плотность Вселенной и кривизна пространства-времени должны были тогда быть бесконечными. Этот момент мы называем Большим Взрывом.

Все наши космологические теории основаны на предположении, что пространство-время гладкое и почти плоское. Это означает, что все данные теории нарушаются в момент Большого Взрыва, ведь пространство-время бесконечной кривизны трудно назвать почти плоским! Таким образом, если что-то и предшествовало Большому Взрыву, оно не даст ключа к пониманию того, что случилось позже, потому что предсказуемость нарушается в момент Большого Взрыва. Аналогично, зная только то, что случилось после него, мы не можем определить, что было раньше. События, предшествовавшие Большому Взрыву, не могут иметь никаких последствий для нас и поэтому не должны приниматься в расчет при научном описании Вселенной. Мы должны исключить их из своей модели и считать, что Большой Взрыв был началом времени. Вопрос о том, кто создал условия для Большого Взрыва, и другие подобные вопросы не являются научными.

Еще одной бесконечной величиной во Вселенной нулевых размеров должна быть температура. Считается, что в момент Большого Взрыва Вселенная была бесконечно горячей. В процессе ее расширения температура излучения понижалась. И поскольку температура является мерой средней энергии — или скорости — частиц, охлаждение Вселенной должно было иметь серьезные последствия для материи. При очень высоких температурах стремительное движение частиц препятствовало их взаимному притяжению под действием ядерных или электромагнитных сил, но с понижением температуры частицы стали притягиваться и соединяться друг с другом. Даже типы существующих во Вселенной частиц зависят от ее температуры, а значит, и от возраста.

Аристотель не верил, что вещество состоит из частиц. Он полагал, что материя является непрерывной. По Аристотелю ее можно бесконечно делить на все меньшие и меньшие части и никогда не натолкнуться на неделимую «крупицу». Однако некоторые древнегреческие мыслители, например Демокрит, думали, что материи присуща «зернистость» и что все в природе состоит из огромного числа атомов различного вида. (Слово «атом» означает в переводе с греческого «неделимый».) Мы теперь знаем, что это верное представление — по крайней мере, в окружающей нас среде и при нынешнем состоянии Вселенной. Но атомы нашей Вселенной существовали не всегда, они не являются неделимыми и представляют собой лишь небольшую часть всего разнообразия частиц во Вселенной.

Атомы состоят из частиц меньшего размера: электронов, протонов и нейтронов. Протоны и нейтроны, в свою очередь, построены из еще более миниатюрных частиц, называемых кварками. Кроме того, каждому типу субатомных частиц соответствуют античастицы. Они имеют такую же массу, но противоположный электрический заряд и другие характеристики. Например, античастица электрона, называемая позитроном, имеет положительный заряд, противоположный отрицательному заряду электрона. Возможно, существуют целые антимиры и антилюди, состоящие из античастиц. Однако же, если частица и античастица встретятся, они взаимно уничтожаются. Так что, если вам доведется встретить свое анти-я, не обменивайтесь с ним рукопожатием! Вы оба исчезнете в ослепительной вспышке света.

Световую энергию переносят частицы другого типа — безмассовые фотоны. Для Земли ближайшим и крупнейшим поставщиком фотонов служит ядерное пекло Солнца. Оно в изобилии поставляет и другие частицы — упоминавшиеся выше нейтрино (и антинейтрино). Но эти последние, будучи чрезвычайно легкими, почти не взаимодействуют с веществом и потому проходят сквозь нас миллиардами каждую секунду, не производя никакого эффекта. Хорошо известно, что физики обнаружили десятки типов элементарных частиц. Во Вселенной, претерпевающей сложные эволюционные изменения, набор этих частиц тоже эволюционировал. Именно эта эволюция сделала возможным возникновение планет, подобных нашей, и живых существ, подобных нам.

Через секунду после Большого Взрыва Вселенная расширилась достаточно, чтобы ее температура упала приблизительно до десяти миллиардов градусов Цельсия. Это в тысячу раз больше, чем в центре Солнца, но подобные температуры отмечались при взрывах водородных бомб. В то время во Вселенной присутствовали главным образом фотоны, электроны, нейтрино и их античастицы, а также гораздо меньшее число протонов и нейтронов. Тогда частицы обладали настолько высокой энергией, что, сталкиваясь, порождали множество различных пар частица—античастица. Например, столкновение фотонов могло породить электрон и его античастицу, позитрон. Некоторые из таких вновь возникших частиц, сталкиваясь со своими близнецами-античастицами, аннигилировали. Всякий раз, когда электрон встречается с позитроном, они уничтожаются, но обратный процесс не так прост. Для того чтобы две безмассовые частицы, такие как фотоны, могли породить пару частица—античастица, например электрон и позитрон, безмассовым частицам надо обладать некоторой минимальной энергией. Электрон и позитрон имеют массу, и эта вновь создаваемая масса должна порождаться энергией сталкивающихся частиц. Поскольку Вселенная продолжала расширяться и температура понижалась, столкновения частиц, обладающих достаточной энергией для рождения электрон-позитронных пар, случались все реже. Гораздо чаще происходило взаимоуничтожение пар (рис. 20). В конечном счете б о льшая часть электронов и позитронов аннигилировали друг с другом, произведя большое количество фотонов и оставив относительно мало электронов. Нейтрино и антинейтрино, которые взаимодействуют между собой и с другими частицами очень слабо, уничтожали друг друга не так быстро. Они и сегодня должны еще присутствовать вокруг нас. Если бы мы могли наблюдать их, это послужило бы хорошим подтверждением для описанной выше картины горячей молодой Вселенной. К сожалению, энергия этих частиц в настоящее время слишком низка, чтобы наблюдать их непосредственно (хотя, возможно, их удастся обнаружить косвенно).

Приблизительно через сто секунд после Большого Взрыва Вселенная остыла до одного миллиарда градусов — температуры недр самых горячих звезд. В этих условиях энергии протонов и нейтронов уже недостаточно для преодоления сильного ядерного взаимодействия. Они начинают сливаться, образуя ядра дейтерия (тяжелого водорода), которые содержат один протон и один нейтрон.

Ядра дейтерия могут затем, присоединяя протоны и нейтроны, превратиться в ядра гелия, состоящие из пары протонов и пары нейтронов, а также породить некоторое количество ядер двух более тяжелых элементов — лития и бериллия. Можно подсчитать, что согласно теории горячей Вселенной около четверти протонов и нейтронов объединяются в ядра гелия при сохранении небольшого количества тяжелого водорода и других элементов. Остальные нейтроны в результате распада превращаются в протоны — ядра обычных атомов водорода.

Эта картина горячей Вселенной была впервые предложена Джорджем Гамовым в известной работе, написанной в 1948 г. в соавторстве с его учеником Ральфом Альфером. Гамова отличало недюжинное чувство юмора: он добавил к списку авторов имя ученого-ядерщика Ханса Бете, чтобы получилось: Альфер, Бете, Гамов, наподобие первых трех букв греческого алфавита (альфа, бета, гамма), — очень уместно для статьи о зарождении Вселенной. В упомянутой работе авторы сделали замечательное предсказание, что излучение (в форме фотонов), возникшее на начальных, горячих стадиях развития Вселенной, должно сохраниться до наших дней, но его температура должна быть всего на несколько градусов выше абсолютного нуля. (Абсолютным нулем считается температура —273°С, при которой вещество не обладает никакой тепловой энергией. Таким образом, это самая низкая из возможных температур.)

Именно это микроволновое излучение обнаружили Пензиас и Вильсон в 1965 г. Когда Альфер и Гамов опубликовали свою статью, о ядерных реакциях между протонами и нейтронами было известно довольно мало. Поэтому предсказания соотношений различных элементов в ранней Вселенной оказались довольно приблизительными. Впоследствии, когда вычисления были повторены с учетом новых, более точных, данных, оказалось, что результаты очень хорошо согласуются с наблюдениями. Остается добавить, что весьма трудно найти другое объяснение тому, почему именно четверть массы Вселенной приходится на долю гелия.

Рис. 20. Равновесие фотонов и электрон-позитронных пар.

В ранней Вселенной наблюдалось равновесие между образованием фотонов при столкновении электронов и позитронов и обратным процессом. По мере того как Вселенная остывала, баланс был нарушен в пользу образования фотонов. Постепенно большая часть электронов и позитронов аннигилировали друг с другом, и электронов осталось относительно мало.

И все же описанная картина порождает ряд проблем. Продолжительность ранних этапов эволюции в модели Большого Взрыва недостаточна для того, чтобы тепло успело распространиться из одной области горячей Вселенной в другую. Это означает, что в начальном состоянии Вселенная должна была во всех местах иметь строго одинаковую температуру, — иначе никак не объяснить одинаковую температуру микроволнового фона во всех направлениях. Кроме того, начальная скорость взрыва должна была оказаться очень точно подобранной, чтобы расширение шло на самой грани критического режима, еще позволяющего избежать схлопывания. Очень трудно объяснить, почему Вселенная зародилась именно в таком состоянии, если не предполагать вмешательства Бога, который намеревался создать существ вроде нас.

Пытаясь найти модель Вселенной, в которой множество различных начальных состояний могло развиться во что-то подобное существующему мирозданию, ученый из Массачусетского технологического института Алан Гут предположил, что ранняя Вселенная могла пройти через период очень быстрого расширения. Это расширение называют «инфляцией», подразумевая, что Вселенная в тот период расширялась с нарастающей скоростью. Согласно Гуту радиус Вселенной за ничтожно малую долю секунды увеличился в миллион миллионов миллионов миллионов миллионов (единица с тридцатью нулями) раз. Любые неоднородности во Вселенной просто разгладились вследствие этого расширения, как морщины на раздувающемся воздушном шаре. Таким образом, инфляционная теория объясняет, как нынешнее, гладкое и однородное, состояние Вселенной могло развиться из самых разных неоднородных изначальных состояний. Так что мы теперь до известной степени уверены в том, что имеем правильную картину событий вплоть до одной миллиардной триллионной триллионной доли (10—33 ) секунды от Большого Взрыва.

Вся эта первоначальная суматоха Большого Взрыва завершилась спустя всего несколько часов формированием ядер гелия и некоторых других элементов, таких как литий. Затем около миллиона лет Вселенная просто продолжала расширяться и ничего существенного не происходило. Наконец температура понизилась до нескольких тысяч градусов. Кинетическая энергия электронов и ядер стала недостаточной для того, чтобы преодолевать силу электромагнитного притяжения, и они начали объединяться в атомы.

Вселенная в целом продолжала бы расширяться и остывать, но в областях, где плотность была чуть выше средней, расширение дополнительно тормозилось гравитационным притяжением избыточного вещества. Под действием этого притяжения расширение в этих областях Вселенной остановилось, уступив место сжатию (коллапсу). По ходу коллапса тяготение окружающего вещества могло придать этим областям едва заметное вращение. При стягивании коллапсирующей области ее вращение ускоряется, подобно тому как фигурист начинает быстрее кружиться на льду, когда прижимает к себе руки. Наконец, когда размеры такой области становились достаточно малыми, ее вращение ускорялось настолько, что могло сбалансировать гравитацию. Так образовались вращающиеся спиральные галактики. Другие области Вселенной, избежавшие вращения, стали овальными объектами, которые называют эллиптическими галактиками. В таких областях коллапс приостанавливается устойчивым обращением отдельных частей галактики вокруг ее центра, в то время как вся звездная система в целом не вращается.

Со временем водородно-гелиевый газ в галактиках должен был распадаться на небольшие облака, которые коллапсировали под действием собственного тяготения. При сжатии атомы в них сталкивались и температура газа росла, пока не достигала величины, необходимой для начала реакций ядерного синтеза. Эти реакции преобразуют водород в гелий и похожи на управляемый взрыв водородной бомбы. Выделяемое при этом тепло заставляет звезды светиться. Это тепло также увеличивает давление газа, пока это последнее не приходит в равновесие с силами тяготения. В результате газ перестает сжиматься. Примерно так газовые облака становятся звездами, подобными нашему Солнцу, которые сжигают водород, превращая его в гелий, и излучают высвободившуюся энергию в форме тепла и света. Они обнаруживают отдаленное сходство с воздушным шаром, в котором внутреннее давление воздуха на стенки, заставляющее шар расширяться, уравновешивается упругостью резиновой оболочки, стремящейся уменьшить размер шара.

Сформировавшись из облаков горячего газа, звезды в течение долгого времени сохраняют устойчивость благодаря балансу между выделением тепла в ядерных реакциях и гравитационным притяжением. Однако рано или поздно звезда обречена исчерпать свой запас водорода и другого ядерного топлива. Парадоксально, но чем больше запасы топлива в звезде, тем быстрее они заканчиваются. Дело в том, что чем массивнее звезда, тем горячее она должна быть, чтобы сбалансировать свое тяготение. А чем горячее звезда, тем быстрее протекает реакция ядерного синтеза и быстрее расходуется топливо. Нашему Солнцу, вероятно, хватит топлива еще на пять миллиардов лет или около того, но более массивные звезды способны израсходовать свои ресурсы всего за сто миллионов лет, что значительно меньше возраста Вселенной.

Когда звезда исчерпывает топливо, она начинает остывать и гравитация берет верх, вызывая сжатие. Сжатие сближает атомы, заставляя звезду снова разогреться. При достаточном нагреве звезда может начать преобразовывать гелий в более тяжелые элементы, такие как углерод и кислород. Это, однако, высвобождает не слишком много энергии, так что кризис неизбежен. Что случается дальше, не вполне ясно, но весьма вероятно, что центральные области звезды коллапсируют, переходя в очень плотное состояние, становясь, например, черной дырой.

Термин «черная дыра» появился сравнительно недавно. Впервые его употребил в 1969 г . американский ученый Джон Уилер в качестве наглядного описания идеи, высказанной не меньше двухсот лет назад. Если звезда достаточно массивна, может оказаться, что даже свет не сумеет преодолеть ее тяготение и тогда звезда будет выглядеть черной для всех внешних наблюдателей.

Когда эта идея впервые была высказана, существовало две теории о природе света. Одна, которой отдавал предпочтение Ньютон, провозглашала, что свет состоит из частиц, или корпускул. Другая декларировала, что свет представляет собой волны. Теперь мы знаем, что верны обе теории. Как будет показано в гл. 9, вследствие корпускулярно-волнового дуализма в квантовой механике свет в некоторых случаях ведет себя как волна, а в других определенно проявляет свойства частицы. Понятия «волна» и «частица» — всего лишь придуманные людьми концепции, и природа вовсе не обязана следовать им, подгоняя все явления под ту или иную абстрактную категорию!

Волновая теории не проясняет, как должен вести себя свет под действием гравитации. Но если считать свет состоящим из частиц, то можно ожидать, что они будут реагировать на гравитацию так же, как пушечные ядра, космические корабли и планеты. Например, после выстрела в воздух пушечное ядро рано или поздно упадет на Землю, при условии что скорость, с которой оно вылетело из пушки, не превышает определенной величины, называемой скоростью убегания (рис. 21). Скорость убегания зависит от силы земного притяжения, то есть от массы Земли, но она не зависит от массы пушечного ядра — по той же самой причине, по которой ускорение свободного падения тел не зависит от их массы. И если уж скорость убегания не зависит от массы тела, то можно допустить, что приведенные выше рассуждения верны и для частиц света, несмотря на то что их масса равна нулю! Поэтому резонно предположить, что частицы света должны двигаться с некоторой минимальной скоростью, чтобы вырваться из поля тяготения звезды.

Рис. 21. Пушечное ядро при скорости, меньшей и большей скорости убегания.

Тело, летящее вверх, не упадет, если скорость, которую ему сообщили, больше скорости убегания.

Первоначально считалось, что частицы света движутся бесконечно быстро и потому гравитация не способна их замедлить, однако из открытия Рёмера, установившего, что скорость света конечна, вытекало, что гравитация может весьма существенно воздействовать на свет. У достаточно массивной звезды скорость убегания может оказаться больше скорости света, и все излучение, испускаемое такой звездой, будет к ней возвращаться. Основываясь на этом предположении, профессор Кембриджского университета Джон Мичелл в 1783 г. опубликовал в «Философских трудах Лондонского Королевского общества» работу, в которой указал, что звезда определенной массы и плотности должна иметь столь сильное гравитационное поле, что свет не сможет ее покинуть. Всякий испущенный с ее поверхности свет будет притянут назад, прежде чем уйдет достаточно далеко от звезды. Такие объекты мы теперь называем черными дырами, потому что они и представляют собой черные пустоты в пространстве.

Однако не слишком правильно полностью уподоблять свет пушечным ядрам, послушным закону тяготения Ньютона, потому что скорость света имеет постоянное значение. Пушечное ядро, выстреленное вверх, будет замедляться гравитацией, а в конечном счете остановится и упадет; фотон же должен двигаться вверх с постоянной скоростью. Последовательной картины того, как гравитация влияет на свет, не было до 1915 г., когда Эйнштейн предложил общую теорию относительности. Детальное описание того, что происходит с излучением массивной звезды согласно общей теории относительности, впервые было предложено молодым американским ученым Робертом Оппенгеймером в 1939 г.

Наши рекомендации