Глава 2. Тайны квантовой механики 3 страница
Рис. 2.16.
Из всего сказанного остается неясным не только поставленный вопрос о состоянии кота (является ли он живым, мертвым или пребывает в некоторой комбинации этих состояний), но даже и то, каким образом мы можем воспринимать кота живым или мертвым. Более того, в более общем случае неравных друг другу амплитуд w и z остается совершенно неясным, почему вероятности должны составлять именно |w |2 и |z |2. Мне такое описание очень не нравится, и поэтому я вновь обращусь к общей диаграмме состояния физики (рис. 2.1) и попробую улучшить ее, добавив необходимые, на мой взгляд, элементы будущего развития (рис. 2.17). Операция, обозначенная мною ранее буквой R фактически представляет собой лишь приближенную форму более важной и необходимой операции, которую следовало бы обозначить аббревиатурой OR (я подразумеваю Objective Reduction – восстановление объективной картины). Речь идет действительно о восстановлении объективности, ведь, в конце концов, объективно может происходить одно или другое событие. Именно эта часть теории представляется мне недостающей или отсутствующей, а сокращение OR представляется мне весьма удачным, поскольку оно не только записывается и звучит, как английское слово «или», но и действительно соответствует ситуации, где происходит одно ИЛИ другое.
Рис. 2.17.
Но почему возникают все эти проблемы? Моя личная точка зрения сводится к тому, что трудности связаны с какой-то ошибкой в использовании принципа суперпозиции для сильно различающихся пространственно-временных геометрий, с представлением о которых мы уже сталкивались в гл. 1. На рис. 2.18, а показаны две такие геометрии, причем я специально представил их в виде некоторой суперпозиции, характерной для обсуждения частиц и фотонов. Рассматривая суперпозиции пространственно-временных состояний, мы сразу столкнемся с массой проблем, поскольку их временные конусы могут иметь разную направленность. В сущности, мы здесь имеем дело с одной из важнейших задач квантования в общей теории относительности. Я лично убежден, что все трудности построения физических теорий связаны именно со странностями суперпозиций пространственно-временных состояний.
Рис. 2.18.
На мой взгляд, сложностей можно избежать лишь при полном отказе от создания таких суперпозиций. Так или иначе, но любая такая суперпозиция должна воплотиться в одно из возможных ИЛИ, что означает наличие некоторого события на уровне пространства-времени (рис. 2.18, б). Разумеется, вы можете возразить мне примерно следующим образом: «Все сказанное в принципе выглядит убедительным, но ведь при любой попытке объединения квантовой механики с общей теорией относительности мы должны столкнуться с этими смешными, нелепыми величинами (планковское время и планковская длина), на много порядков меньшими любых промежутков времени и пространства, с которыми приходится сталкиваться в физике (даже в физике элементарных частиц). Это совершенно не те масштабы, в которых можно описывать нечто реальное, типа людей или котов. Причем тут квантовая гравитация?» Но я убежден, что именно на этом уровне определяются фундаментальные законы всех происходящих в природе процессов.
Что связывает длину Планка (10-33 см) с процессом редукции (коллапса) квантового состояния? На рис. 2.19 приведена очень простая схема бифуркации пространства-времени, соответствующая суперпозиции двух пространственно-временных состояний, в одном из которых кот Шредингера является живым, а в другом – мертвым. При этом почему-то кажется, что эти два пространственно-временных состояния могут образовывать суперпозицию. Мы должны спросить сами себя: «Что необходимо изменить в правилах игры, если мы видим, что эти состояния стремятся стать совершенно различными?» Взгляните на рисунок еще раз и отметьте, что в некотором (кстати, вполне разумном) смысле разница этих геометрий имеет порядок планковской длины! Когда геометрии состояний начинают различаться на эту величину, нам следует задуматься самим об изменении правил и законов. Я хочу подчеркнуть, что мы имеем дело с пространствами-временами, а не только с пространствами. При «разделении пространства-времени в планковских масштабах» очень малые пространственные различия соответствуют большим временам, и наоборот, чрезвычайно большие пространственные изменения – малым временам. Основная проблема при этом состоит в том, чтобы оценить и уловить тот момент, когда разница между двумя пространствами-временами становится настолько значительной, что Природа сама отбирает какое-то одно пространство-время. Я хочу сказать, что Природа выбирает одно из возможных состояний в соответствии с некоторым, пока неизвестным нам законом.
Рис. 2.19. Как связана планковская длина (10-33 см) с задачей редукции квантовых состояний?
Очень упрощенно идея состоит в следующем: связь проявляется в том случае, когда перемещение масс между двумя состояниями, участвующими в суперпозиции, становится настолько значительным, что соответствующие пространства-времена различаются на величину порядка 10-33 см.
За какое время Природа осуществляет этот выбор? Мы можем рассмотреть некоторые совершенно определенные ситуации, для которых удовлетворяется ньютоновское приближение в теории Эйнштейна и одновременно четко определено различие двух гравитационных полей, связанных с членами квантовой суперпозиции (т. е. двух комплексных амплитуд, примерно равных по величине). Я могу предложить вам, например, следующий эксперимент. Давайте пожалеем уставшего кота и рассмотрим движение массивного шара в эксперименте, показанном на рис. 2.20. Насколько велика должна быть масса шара, сколь далеко он может отклониться и каково будет пространство-время после редукции вектора состояний? Я буду рассматривать суперпозицию двух состояний как некоторое неустойчивое состояние, немного напоминающее нестабильную частицу типа ядра урана или чего-либо похожего, способного распасться или превратиться в нечто другое, причем это превращение связано с каким-то определенным временным масштабом. Предположение о неустойчивости подразумевает какие-то неизвестные нам физические законы. Для оценки временного масштаба рассмотрим энергию Е, необходимую для мгновенного перемещения шара из одного гравитационного поля в другое. Характерный масштаб времени Т такого перехода можно найти из отношения величины ћ (постояная Планка, деленная на 2 π) к гравитационной энергии:
T = ћ / E
Рис. 2.20.
Вместо рассмотрения судьбы кота можно провести измерения параметров движения достаточно массивного шара и ответить на несколько простых вопросов. Какова должна быть масса шара? Какова величина смещения? Сколь долго может существовать суперпозиция до наступления момента R?
Существует много подходов, приводящих к такой оценке, которые различаются лишь деталями, но сохраняют нечто общее, характерное для всех гравитационных теорий.
Можно привести много доводов в пользу предлагаемой гравитационной модели. Прежде всего отметим, что все другие схемы, которые в явной форме описывают редукцию (коллапс) квантовых состояний за счет введения новых физических явлений, сталкиваются с проблемой сохранения энергии. Кажется, что закон сохранения энергии при квантовой редукции нарушается (возможно, так оно и происходит на самом деле), однако я думаю, что предлагаемая гравитационная модель дает нам прекрасный шанс полностью освободиться от этой сложной проблемы. Я не могу пока объяснить все это в деталях, позвольте изложить некоторые соображения по этому поводу.
В общей теории относительности масса и энергия представляют собой довольно необычные величины. Прежде всего, масса эквивалентна энергии (деленной на квадрат скорости света) и, следовательно, энергия гравитационного потенциала вносит в массу свой вклад (причем отрицательный!). Соответственно, если два массивных объекта достаточно удалены друг от друга, то система в целом оказывается несколько массивнее, чем та же система с более близко расположенными объектами (рис. 2.21). Хотя плотность энергии-массы (измеряемой в единицах тензора энергии-импульса) равна нулю лишь внутри объема массивных объектов, а энергия каждого из них очень слабо зависит от другого, тем не менее некоторая разница в полной энергии двух систем, показанных на рис. 2.21, должна существовать. Полная энергия является нелокальной характеристикой, т.е. в общей теории относительности есть что-то принципиально нелокальное, связанное с энергией. Именно этим объясняется знаменитый эффект поведения двойных пульсаров, о котором я упоминал в гл. 1 (гравитационные волны уносят из системы положительную энергию и массу, однако энергия сохраняется нелокально за счет внешнего пространства). Вообще говоря, гравитационные волны представляют собой какой-то странный объект, ускользающий от наблюдателя. Мне кажется, что мы могли бы легко избавиться от всех ужасных проблем, связанных с поведением энергии при редукции вектора состояний, если бы нашли какой-то разумный метод объединения квантовой механики с общей теорией относительности. Проблема заключается в том, что при суперпозиции мы должны учитывать и гравитационный вклад состояний, однако никто не представляет, какой смысл имеет локальный вклад гравитации в энергию системы, вследствие чего и возникает существенная неопределенность в величине гравитационной энергии (эта неопределенность по порядку величины совпадает с предложенным выше значением Е). Именно с такой ситуацией мы сталкиваемся при рассмотрении процессов распада частиц. Неопределенность в энергии-массе нестабильных частиц обычно оказывается связанной с их временем жизни.
Рис. 2.21. Полная масса-энергия гравитирующей системы с учетом различной локализации масс.
Вопрос о явных или очевидных временных масштабах очень важен для рассматриваемых нами проблем, и я еще вернусь к нему в гл. 3. Каковы времена распада для реальных систем и какие пространственно-временные суперпозиции этому соответствуют? Считается, например, что время жизни протона (который условно можно считать просто твердым шариком) составляет несколько миллионов лет (оценка представляется весьма разумной, поскольку экспериментально распад одиночных протонов никогда не наблюдался). Для капельки воды время распада может составлять несколько часов (при радиусе ~10-5 см), одну двадцатую секунды (при радиусе ~10-4 см) или одну миллионную долю секунды (при радиусе ~10-3 см). Эти цифры наглядно показывают связь между масштабами и характером физических явлений.
Существует еще одно довольно важное обстоятельство, которое следует упомянуть. Ранее я немного подшучивал над сторонниками подхода FАРР (квантовая механика для всех практических целей), однако в этом подходе содержится и очень важный аспект, а именно: учет окружения, о котором я пока почти ничего не говорил. В реальных ситуациях учет окружения существенно важен для рассматриваемых нами задач. В сущности, мы не имеем права говорить просто «шар здесь» или «шар там», а должны каждый раз говорить о суперпозиции типа «этот шар плюс окружение» или «другой шар плюс его окружение» и т. д. Кроме того, необходимо очень внимательно проверять, связаны ли основные наблюдаемые эффекты с движением именно шаров и других тел или с их окружением. Если какая-то проблема связана с окружением, то наблюдаемый эффект будет случайным, а его описание будет иметь привычный вид. Однако если система достаточно изолированна и ролью окружения можно пренебречь, то в поведении системы, возможно, проявится нечто выходящее за рамки обычной квантовой механики. Было бы очень интересно предложить какие-либо разумные эксперименты этого типа (у меня имеются некоторые идеи на этот счет), которые доказали бы справедливость предлагаемой схемы или, наоборот, продемонстрировали, что привычные квантовые эффекты в этих условиях сохраняются, и мы действительно должны всерьез рассматривать существование суперпозиции состояний таких шаров (или, если угодно, котов).
На рис. 2.22 я попытался обобщить все приведенные выше рассуждения и свести их в некоторую схему. Для этого я расположил различные фундаментальные физические теории в вершинах некоторого абстрактного куба с несколько деформированными гранями (чуть ниже я поясню, что заставило меня использовать такой непривычный художественный прием). Три измерения этого куба соответствуют трем основным физическим константам: гравитационной постоянной G (горизонтальная ось), обратной скорости света с-1 (поперечная ось) и постоянной Дирака-Планка ћ (вертикальная ось, направленная вниз). В привычных нам единицах все упомянутые константы очень малы и их можно приравнять нулю при любых разумных приближениях. При равенстве нулю всех трех констант мы имеем картину мира, которую я называю физикой Галилея (верхний левый угол рисунка). Введение отличной от нуля гравитационной постоянной приводит нас вдоль горизонтальной оси к ньютоновской теории гравитации (геометрическое определение пространства-времени для этой теории было дано позднее Картаном). И наконец, использование неравной нулю величины с-1 приводит нас к специальной теории относительности в формулировке Пуанкаре-Эйнштейна-Минковского. Верхнюю «грань» нашего деформированного куба можно «достроить», считая отличными от нуля оба указанных выше коэффициента, что приводит нас к общей теории относительности Эйнштейна. Однако такое обобщение никак нельзя признать «честным», и поэтому я на рисунке изобразил соответствующую вершину куба несколько деформированной. Считая величину ћ отличной от нуля (но полагая при этом G = с-1 = 0), мы получаем обычную квантовую механику. Используя уже менее ясные варианты обобщения и вводя отличную от нуля величину с-1, мы можем получить квантовую теорию поля и замкнуть левую грань куба (она тоже немного искажена, чтобы подчеркнуть недостаток «прямоты» и ясности используемой методики).
Рис. 2.22.
Мы не можем завершить построение указанного куба и получить общую картину связи различных теорий, так как принципы теории гравитации и квантовой механики существенно противоречат друг другу. Это противоречие проявляется даже в случае ньютоновской теории гравитации (где подразумевается, что с-1 = 0), если мы попытаемся получить соответствующую (картановскую) геометрию, в которой мог бы выполняться эйнштейновский принцип эквивалентности (напомню, что в соответствии с этим принципом постоянные гравитационные поля нельзя получить в ускоренных системах). На это обстоятельство указал мне Джой Кристиан, который также увлекался построениями типа рис. 2.22. Однако пока у нас нет никакой возможности объединения квантовой механики и ньютоновской гравитации (объединения, в котором эйнштейновский принцип эквивалентности будет учитываться совершенно строго, как в классической геометрической теории Картана), вследствие чего, по моему глубокому убеждению, мы должны искать пути такого объединения, пользуясь эффектом редукции квантовых состояний, что соответствует в основных чертах идеям теории OR, о которой я говорил в начале главы. Картина такого объединения пока еще очень туманна, и поэтому передняя грань куба (в отличие от задней!) пока выглядит совершенно бесформенной. Полная теория, в которой все три основные константы (ћ, G и с-1) не равны нулю и которая позволит нам правильно замкнуть грани предлагаемого «куба», должна включать в себя изящные и сложные математические схемы, которые нам еще предстоит разработать.
Глава 3. Физика и разум
Первые две главы были посвящены окружающему нас физическому миру и математическим приемам (иногда поразительно точным, иногда весьма странным), используемым для его описания. В гл. 3 мне хочется рассказать о мысленном мире, мире идей и его связях с физическим миром. Мне кажется, что епископ Беркли должен был бы считать, что физический мир в каком-то смысле возникает из мысленного, в то время как стандартная научная точка зрения сводится к тому, что мышление является всего лишь одной из особенностей некоторых физических структур.
Карл Поппер когда-то ввел в науку представление о так называемом «третьем мире», мире культуры (рис. 3.1). Рассматривая его в качестве продукта мышления, Поппер также предложил некоторую иерархию миров, в которой мысленный мир связан с физическим (возникает в нем?) и культура соответственно каким-то образом возникает из мысленного мира (рис. 3.2).
Рис. 3.1. «Третий мир», предложенный Карлом Поппером.
Рис. 3.2.
Мне хочется взглянуть на эти проблемы с несколько иной точки зрения. Вместо того чтобы считать (вслед за Поппером) культуру порождением мышления, я предпочитаю рассматривать и связывать миры по схеме рис. 3.3, в которой «третий мир» относится не к культуре, а к миру абсолютов, или платоновских идей, т.е. к представлениям некоторых абсолютных математических истин. Такому подходу соответствует приведенный ранее рис. 1.3, отражающий глубокую связь законов физического мира с точными математическими законами.
Рис. 3.3. Три мира и три тайны.
В этой главе речь пойдет в основном об отношениях между указанными мирами. Мне кажется весьма спорной сама идея возникновения мышления из каких-либо физических структур или сущностей (кстати, философы всегда относились к этой идее с недоверием). В физике мы говорим о веществах, предметах, частицах, пространстве, времени, энергии и т. п. Для меня всегда оставалось загадкой, каким образом физика, изучающая эти объекты, может быть связана с обычными человеческими чувствами, например с восприятием красного цвета или ощущением счастья. В сущности, таинственными и непонятными представляются все отношения между тремя мирами, показанные пронумерованными стрелками на рис. 3.3. В первых двух главах я уже говорил о связи математики и физики (Тайна 1), которую когда-то знаменитый Е. Вигнер (см. список литературы) назвал непостижимой, необычной и даже странной (я целиком разделяю эту точку зрения). Действительно, давайте попробуем задуматься о том, почему физический мир столь четко следует некоторым математическим законам? Более того, при этом математика (которая, по предположению, управляет поведением физического мира) является сама по себе исключительно полезной и важной наукой, если рассматривать ее просто в качестве отдельной науки. Эти сложные отношения представляются мне таинственными и глубокими.
В этой главе я буду говорить о Тайне 2, связанной с отношениями физического и мысленного миров, однако в этой связи нам придется задуматься и о Тайне 3: на чем, собственно говоря, основана наша способность воспринимать математические истины? Когда я упоминал о мире платоновских идей в первых двух главах, я говорил в основном о математике и математических понятиях, которые требуются для описания физического мира. Мы чувствуем, что математика необходима для этого описания, однако, с другой стороны, существует распространенное мнение, что сами математические структуры являются всего лишь порождением нашего сознания, т. е. математика представляет собой некий продукт человеческой мысли. Должен сразу отметить, что сами математики (и я лично тоже) относятся к математическим истинам совсем по-другому. Поэтому наличие на рисунке стрелки, связывающей мысленный мир с платоновским (как, впрочем, и других стрелок), не подразумевает, что какие-то из миров просто порождаются другими. В каком-то смысле мы можем говорить о таком порождении, однако стрелки на рис. 3.3 означают лишь то, что между этими мирами существуют некоторые связи.
Гораздо важнее, что на рис. 3.3 представлены три моих собственных предрассудка или предубеждения. Первый из них заключается в том, что весь физический мир в принципе может быть описан математически. Я не утверждаю, что любая математика описывает какие-то физические процессы, а всего лишь думаю, что правильно выбранные разделы математики позволяют очень точно описывать физические явления, т. е. физический мир ведет себя в соответствии с законами математики. Таким образом, некоторая малая часть платоновского мира идей заключает в себе законы физического мира. Точно так же я не утверждаю, что все в физическом мире обладает какой-то ментальностью, а скорее предполагаю, что все существующие мыслительные объекты основаны на каких-то физических сущностях. Это утверждение можно назвать моим вторым предубеждением. И наконец, третье предубеждение состоит в том, что наше восприятие математики (по крайней мере, в принципе) связано с тем, что наше сознание в определенном смысле способно воспринимать какие-то отдельные объекты в мире платоновских идей. Я сознаю, что у некоторых людей последнее утверждение может вызвать недоумение или раздражение, однако все три высказанных предположения требуют обсуждения и размышления. Кстати, только нарисовав эту диаграмму, я осознал, что она отражает мои собственные предубеждения. Я еще вернусь к этим вопросам в конце главы.
Позвольте мне начать с некоторых общих соображений о человеческом сознании. Прежде всего мы должны решить, следует ли нам искать для этого явления какие-то научные объяснения? Я не только убежден, что это необходимо, но и весьма серьезно отношусь к стрелке, связывающей физический и мысленный миры. Иными словами, мы обязаны понять мысленный мир на основе физического.
На рис. 3.4 я попытался выделить и обобщить некоторые характеристики этих двух миров. С правой стороны отмечено, что физический мир воспринимается нами как нечто подчиняющееся точным математическим и физическим законам (я об этом довольно много говорил в первых двух главах книги). Слева мы имеем сознание, принадлежащее мысленному миру, и связанные с ним понятия типа «душа», «настроение», «религиозность» и т.п., часто употребляемые бессистемно. В наши дни люди предпочитают давать всему научные объяснения и, более того, полагают, что любое научное описание можно в принципе каким-то образом внести в компьютер (т. е. считают, что если математическое описание чего-то существует, то оно может быть записано в память ЭВМ). Опровержению именно этого утверждения и посвящена в основном данная глава (при этом я по-прежнему остаюсь сторонником так называемого физикализма).
Рис. 3.4.
В качестве характеристик физических законов я выписал в правой части рис. 3.4 некоторые термины (предсказуемость и вычислимость), возможность использования которых напрямую зависит от того, описывается ли окружающий нас мир детерминистическими физическими законами и можем ли мы пользоваться компьютерами для моделирования действия этих законов. Существует точка зрения, что для объектов мысленного мира (например, для перечисленных слева понятий эмоции, чувство прекрасного, творчество, вдохновение, искусство) почти невозможно получить описания, пригодные для расчета. С другой стороны, существует и некоторый «научный экстремизм», сторонники которого придерживаются примерно следующей точки зрения: «Все мы всего лишь компьютеры; просто мы еще не знаем, как правильно описывать некоторые вещи, однако если бы нам были известны необходимые правила вычисления, то мы смогли бы описать и все мысленные явления, перечисленные в левой части рис. 3.4». Для описания мысленных процессов часто используются термины появление или возникновение (эмерджентность), но сторонники вычислительного подхода полагают, что свойство возникать тоже может быть получено в результате правильно используемых вычислительных операций.
Так чем же является сознание? Разумеется, я не знаю, как определить сознание, и даже не считаю, что стоит пытаться найти такое определение (поскольку мы не понимаем, что оно означает). Я уверен, что можно найти физически обоснованную концепцию, однако думаю, что любое определение окажется неверным. Поэтому вместо определения я попытаюсь дать вам описание сознания, насколько это возможно. При этом мне кажется, что существуют, по крайней мере, два аспекта сознания. С одной стороны, имеется пассивное проявление сознания, включающее осознание или восприятие (awareness). Я включаю в эту категорию нашу способность воспринимать цвет и гармонию соотношений, способность запоминать и т. п. С другой стороны, существуют и активные проявления сознания, включающие в себя понятия типа свободы воли, целенаправленности действий и т. п. Использование столь различных терминов отражает многообразие и сложность понятий, связанных с сознанием. Однако я хочу обратить ваше внимание на еще один весьма специфический аспект сознания, отличный от упомянутых выше активных и пассивных проявлений (но, возможно, являющийся чем-то промежуточным, лежащим между активной и пассивной деятельностью). Я говорю о понимании (understanding), для которого в английском языке есть еще понятие insight, которое кажется более глубоким и содержательным, поскольку включает в себя представление о проницательности, интуитивном постижении истины, озарении, мгновенном восприятии и т. д. В некоторых ситуациях используются еще и термины осознание и интеллектуальность (awareness, intelligence), которые мне не очень понятны. Разумеется, вы вправе спросить, зачем я говорю о понятиях, реальный смысл которых мне неизвестен? Дело в том, что я – математик, а математики обычно не принимают в расчет такие возражения. Им вовсе не требуются точные определения объектов, с которыми они оперируют, а достаточно знать лишь что-то относительно взаимосвязи этих объектов. Мне представляется довольно важным тот факт, что интеллектуальность является чем-то, требующим объяснения и понимания. Мне кажется неразумным использование этого термина в контексте, где нет представления о «понимании». Впрочем, термин «понимание» также выглядит малоосмысленным вне какого-либо «восприятия», так как понимание можно отнести к какому-то типу восприятия. Все сказанное просто означает, что интеллектуальность требует осознания. И хотя я не могу определить эти термины, я могу утверждать наличие некоторых отношений или связей между ними.
Существуют различные точки зрения на отношения между процессами сознательного мышления и способностью к вычислениям. Четыре основных подхода к этой проблеме (которые я обозначил через A, В, С и D) перечислены в табл. 3.1.
Таблица 3.1
А– Всякое мышление есть просто некоторый вычислительный процесс; в частности, чувство осознанного восприятия также возникает в результате осуществления соответствующих вычислительных операций
В– Сознание является лишь одной из характерных особенностей физической деятельности мозга. Как и любая другая физическая деятельность, сознание может моделироваться вычислительными операциями, но такое моделирование не является, строго говоря, самим сознанием
C– Сознание вызывается определенными физическими действиями мозга, однако эти действия принципиально нельзя вычислительно моделировать правильным образом
D– Сознание не может быть объяснено с использованием каких-либо физических, вычислительных или других научных методов или понятий
В первом подходе (А), который иногда называют сильным принципом искусственного интеллекта или (вычислительным) функционализмом, принято считать, что всякое мышление сводится просто к некоторым вычислительным операциям и, следовательно, правильно выполняя такие вычисления, мы получим в качестве результата способность к осознанию и восприятию.
В соответствии со второй точкой зрения (В) можно (по крайней мере, в принципе) моделировать ту часть работы мозга, которая относится к восприятию. Разница между подходами А и В заключается в том, что во втором случае речь идет лишь о частичном простом моделировании некоторых процессов в мозгу, а не о реальных чувствах и реальном восприятии (эти понятия в подходе B могут быть соотнесены с физическим строением мыслящего объекта). Таким образом, как бы принимается, что мозг создан из нейронов и сам может осознавать процесс восприятия, а моделирование этого процесса исключает именно процесс осознания мозгом своей деятельности. Насколько я могу судить, эту точку зрения активно развивал и поддерживал в своих работах Джон Сирл.