Большой взрыв, черные дыры и эволюция вселенной 5 страница

Когда эта идея впервые была высказана, существовало две теории о природе света. Одна, которой отдавал предпочтение Ньютон, провозглашала, что свет состоит из частиц, или корпускул. Другая декларировала, что свет представляет собой волны. Теперь мы знаем, что верны обе теории. Как будет показано в гл. 9, вследствие корпускулярно‑волнового дуализма в квантовой механике свет в некоторых случаях ведет себя как волна, а в других определенно проявляет свойства частицы. Понятия «волна» и «частица» — всего лишь придуманные людьми концепции, и природа вовсе не обязана следовать им, подгоняя все явления под ту или иную абстрактную категорию!

Волновая теории не проясняет, как должен вести себя свет под действием гравитации. Но если считать свет состоящим из частиц, то можно ожидать, что они будут реагировать на гравитацию так же, как пушечные ядра, космические корабли и планеты. Например, после выстрела в воздух пушечное ядро рано или поздно упадет на Землю, при условии что скорость, с которой оно вылетело из пушки, не превышает определенной величины, называемой скоростью убегания (рис. 21). Скорость убегания зависит от силы земного притяжения, то есть от массы Земли, но она не зависит от массы пушечного ядра — по той же самой причине, по которой ускорение свободного падения тел не зависит от их массы. И если уж скорость убегания не зависит от массы тела, то можно допустить, что приведенные выше рассуждения верны и для частиц света, несмотря на то что их масса равна нулю! Поэтому резонно предположить, что частицы света должны двигаться с некоторой минимальной скоростью, чтобы вырваться из поля тяготения звезды.

Рис. 21. Пушечное ядро при скорости, меньшей и большей скорости убегания.

Тело, летящее вверх, не упадет, если скорость, которую ему сообщили, больше скорости убегания.

большой взрыв, черные дыры и эволюция вселенной 5 страница - student2.ru

Первоначально считалось, что частицы света движутся бесконечно быстро и потому гравитация не способна их замедлить, однако из открытия Рёмера, установившего, что скорость света конечна, вытекало, что гравитация может весьма существенно воздействовать на свет. У достаточно массивной звезды скорость убегания может оказаться больше скорости света, и все излучение, испускаемое такой звездой, будет к ней возвращаться. Основываясь на этом предположении, профессор Кембриджского университета Джон Мичелл в 1783 г. опубликовал в «Философских трудах Лондонского Королевского общества» работу, в которой указал, что звезда определенной массы и плотности должна иметь столь сильное гравитационное поле, что свет не сможет ее покинуть. Всякий испущенный с ее поверхности свет будет притянут назад, прежде чем уйдет достаточно далеко от звезды. Такие объекты мы теперь называем черными дырами, потому что они и представляют собой черные пустоты в пространстве.

Однако не слишком правильно полностью уподоблять свет пушечным ядрам, послушным закону тяготения Ньютона, потому что скорость света имеет постоянное значение. Пушечное ядро, выстреленное вверх, будет замедляться гравитацией, а в конечном счете остановится и упадет; фотон же должен двигаться вверх с постоянной скоростью. Последовательной картины того, как гравитация влияет на свет, не было до 1915 г., когда Эйнштейн предложил общую теорию относительности. Детальное описание того, что происходит с излучением массивной звезды согласно общей теории относительности, впервые было предложено молодым американским ученым Робертом Оппенгеймером в 1939 г.

Картина, которую мы узнали благодаря Оппенгеймеру, выглядит следующим образом. Гравитационное поле звезды изменяет траекторию световых лучей в пространстве‑времени. Этот эффект проявляется в отклонении света далеких звезд, наблюдаемом во время солнечного затмения. Траектории света в пространстве‑времени, проходящие рядом со звездой, слегка искривлены в сторону ее поверхности. Когда звезда сжимается, она становится плотнее и гравитационное поле на ее поверхности усиливается. (Можно представлять себе гравитационное поле исходящим из точки в центре звезды; когда звезда сжимается, точки, лежащие на ее поверхности, приближаются к центру, попадая в более сильное поле.) Более мощное поле сильнее изгибает траектории световых лучей. В итоге при сжатии звезды до некоторого критического радиуса гравитационное поле на ее поверхности становится настолько сильным, а изгиб световых лучей — настолько крутым, что свет уже не может уйти прочь.

Согласно теории относительности ничто не способно двигаться быстрее света. Так что если даже свет не может вырваться, то и ничему другому это тоже не под силу — все будет затянуто назад гравитационным полем. Вокруг сколлапсировавшей звезды формируется область пространства‑времени, которую ничто не может покинуть, чтобы достичь отдаленного наблюдателя. Эта область и есть черная дыра. Внешнюю границу черной дыры называют горизонтом событий. Сегодня благодаря телескопам, которые работают в рентгеновском и гамма‑диапазонах, мы знаем, что черные дыры гораздо более заурядное явление, чем нам думалось раньше. Один спутник отыскал 1500 черных дыр на сравнительно небольшом участке неба. Мы также обнаружили черную дыру в центре нашей Галактики, причем ее масса в миллион раз превышает массу нашего Солнца. Возле этой сверхмассивной черной дыры найдена звезда, которая обращается вокруг нее со скоростью, равной около 2% от скорости света, то есть быстрее, чем в среднем обращается электрон вокруг ядра в атоме!

Чтобы понять, что происходит при коллапсе массивной звезды и формировании черной дыры, следует вспомнить, что теория относительности не признает абсолютного времени. Другими словами, каждый наблюдатель имеет собственную меру времени. Ход времени для наблюдателя на поверхности звезды будет отличаться от хода времени для наблюдателя на расстоянии, потому что на поверхности звезды гравитационное поле сильнее.

Представим себе бесстрашного астронавта, который остается на поверхности коллапсирующей звезды во время катастрофического сжатия. В некоторый момент по его часам, скажем в 11:00, звезда сожмется до критического радиуса, за которым гравитационное поле усиливается настолько, что из него невозможно вырваться. Теперь предположим, что по инструкции астронавт должен каждую секунду по своим часам посылать сигнал космическому кораблю, который находится на орбите на некотором фиксированном расстоянии от центра звезды. Он начинает передавать сигналы в 10:59:58, то есть за две секунды до 11:00. Что зарегистрирует экипаж на борту космического судна?

Ранее, проделав мысленный эксперимент с передачей световых сигналов внутри ракеты, мы убедились, что гравитация замедляет время и чем она сильнее, тем значительнее эффект. Астронавт на поверхности звезды находится в более сильном гравитационном поле, чем его коллеги на орбите, поэтому одна секунда по его часам продлится дольше секунды по часам корабля. Поскольку астронавт вместе с поверхностью движется к центру звезды, действующее на него поле становится все сильнее и сильнее, так что интервалы между его сигналами, принятыми на борту космического корабля, постоянно удлиняются. Это растяжение времени будет очень незначительным до 10:59:59, так что для астронавтов на орбите интервал между сигналами, переданными в 10:59:58 и в 10:59:59, очень ненамного превысит секунду. Но сигнала, отправленного в 11:00, на корабле уже не дождутся.

Все, что произойдет на поверхности звезды между 10:59:59 и 11:00 по часам астронавта, растянется по часам космического корабля на бесконечный период времени. С приближением к 11:00 интервалы между прибытием на орбиту последовательных гребней и впадин испущенных звездой световых волн станут все длиннее; то же случится и с промежутками времени между сигналами астронавта. Поскольку частота излучения определяется числом гребней (или впадин), приходящих за секунду, на космическом корабле будет регистрироваться все более и более низкая частота излучения звезды. Свет звезды станет все больше краснеть и одновременно меркнуть. В конце концов звезда настолько потускнеет, что сделается невидимой для наблюдателей на космическом корабле; все, что останется, — черная дыра в пространстве. Однако действие тяготения звезды на космический корабль сохранится, и он продолжит обращение по орбите.

Этот сценарий, впрочем, не вполне реалистичен. С удалением от центра звезды гравитация ослабевает, поэтому ноги нашего бесстрашного астронавта должны притягиваться сильнее, чем его голова. Эта разница сил приведет к тому, что тело астронавта вытянется на манер спагетти или разорвется на части, прежде чем звезда достигнет критического радиуса, на котором формируется горизонт событий! Однако мы полагаем, что во Вселенной существуют объекты куда большего масштаба, например центральные области галактик, которые тоже могут испытывать гравитационный коллапс, порождая сверхмассивные черные дыры, наподобие той, что есть в центре нашей Галактики. Находясь на таком объекте, наш астронавт не был бы разорван на части до формирования черной дыры. Не ощутив ничего особенного при достижении критического радиуса, он пересек бы роковую черту незаметно для себя. Хотя внешние наблюдатели зафиксировали бы замедление его сигналов, которые в конце концов перестали бы приходить. И только через несколько часов (по измерениям астронавта) его разорвало бы на части из‑за различия гравитационных сил, воздействующих на его голову и ноги (рис. 22).

Рис. 22. Гравитационные силы.

Поскольку гравитационное притяжение ослабевает по мере удаления от его источника, Земля притягивает вашу голову с меньше силой, чем ваши ноги, которые на метр или два ближе к центру нашей планеты. Разница настолько ничтожна, что мы не ощущаем ее, но астронавт, оказавшийся возле черной дыры, будет буквально разорван на части.

большой взрыв, черные дыры и эволюция вселенной 5 страница - student2.ru

Иногда при коллапсе очень массивной звезды ее внешние слои могут быть выброшены в пространство колоссальным взрывом, называемым вспышкой сверхновой. Мощь этого взрыва настолько велика, что сверхновая светит ярче всех звезд целой галактики вместе взятых. Примером может служить сверхновая Крабовидной туманности. Китайские летописи относят ее к 1054 г. Хотя взорвавшаяся звезда находилась на расстоянии 5000 световых лет, она оставалась видимой для невооруженного глаза в течение нескольких месяцев и сияла столь ярко, что была различима даже днем, а ночью при ее свете можно было читать. Вспышка сверхновой в 500 световых годах от нас — в десять раз ближе Крабовидной туманности — оказалась бы в сто раз ярче и буквально превратила бы ночь в день. Чтобы почувствовать мощь подобного взрыва, представьте, что вспышка соперничала бы с сиянием Солнца, даже притом, что звезда находилась бы в десятки миллионов раз дальше него (напомним, что Солнце находится всего в восьми световых минутах от Земли). Достаточно близкая вспышка сверхновой звезды хотя и не разрушила бы Землю, но сопровождалась бы излучением, способным убить все живое на нашей планете. Недавно было высказано предположение, что происшедшее два миллиона лет назад вымирание морских организмов было вызвано всплеском космического излучения, порожденного вспышкой сверхновой вблизи от Земли. Некоторые ученые считают, что высокоорганизованная жизнь может развиться только в тех областях галактик, где не слишком много звезд, — так называемых зонах жизни, — поскольку в районах более плотного скопления звезд вспышки сверхновых — столь обычные явления, что они периодически уничтожают любые зачатки биологической эволюции. Каждый день во Вселенной вспыхивают сотни тысяч сверхновых звезд. В отдельной галактике сверхновые появляются примерно раз в столетие. Но это средние показатели. К сожалению (для астрономов, по крайней мере), последняя вспышка сверхновой в Млечном Пути произошла в 1604 г., еще до изобретения телескопа.

Главной претенденткой на роль следующей сверхновой в нашей Галактике является звезда ро Кассиопеи. К счастью, она находится на вполне безопасном для нас расстоянии 10 000 световых лет. Она относится к немногочисленному классу желтых сверхгигантов. Во всем Млечном Пути имеется лишь семь звезд этого типа. Международная группа астрономов начала изучать ро Кассиопеи в 1993 г. За прошедшие годы у звезды наблюдались периодические колебания температуры на несколько сотен градусов. Затем, летом 2000 г., температура ее внезапно упала примерно с 7000 до 4000 градусов. В это время исследователи обнаружили в атмосфере звезды окись титана, которая, как считается, входит в состав оболочки, выброшенной с поверхности звезды мощной ударной волной.

При вспышке сверхновой ряд тяжелых элементов, образовавшихся в конце жизненного цикла звезды, выбрасывается назад в межзвездную среду, становясь сырьем для формирования следующего поколения звезд. Наше Солнце содержит приблизительно 2% таких тяжелых элементов. Это звезда второго или третьего поколения, которая сформировалась приблизительно пять миллиардов лет назад из облака вращающегося газа, содержавшего выбросы ранних сверхновых. Б о льшая часть газа из того облака пошла на формирование Солнца либо была выброшена вовне, но небольшая часть тяжелых элементов смогла собраться вместе и образовать подобные Земле планеты, которые теперь обращаются вокруг Солнца. И золото в наших украшениях, и уран в наших ядерных реакторах — все это остатки сверхновых звезд, которые вспыхнули еще до рождения Солнечной системы!

Когда Земля еще только сконденсировалась, она была очень горячей и не имела атмосферы. Со временем она остыла и окуталась оболочкой газов, выделявшихся из скальных пород. Мы не смогли бы выжить в этой первичной атмосфере. Вместо кислорода в ней присутствовало множество других, ядовитых для нас, газов, например сероводород (которым пахнут тухлые яйца). Однако существуют некоторые примитивные формы жизни, процветающие именно в таких условиях. Вероятно, они развились в океанах в результате случайного соединения атомов в большие структуры, называемые макромолекулами, которые обладали способностью собирать другие атомы в океане в подобные же структуры. Таким образом, они воспроизводили самих себя и размножались. В некоторых случаях при воспроизведении случались ошибки. Как правило, получившаяся в результате новая макромолекула не могла воспроизводить себя и в конце концов разрушалась. Однако некоторые сбои приводили к появлению новых макромолекул, еще лучше репродуцирующих себя. Обладая подобным преимуществом, они успешно вытесняли исходные макромолекулы. Так было положено начало процессу эволюции, который привел к развитию все более сложных самовоспроизводящихся организмов. Первые примитивные формы жизни потребляли различные вещества, включая сероводород, и выделяли кислород. Это постепенно изменило состав атмосферы, приблизив его к нынешнему, и послужило предпосылкой для возникновения более высокоорганизованных форм жизни: рыб, рептилий, млекопитающих и, наконец, людей.

Описанная картина Вселенной основана на общей теории относительности. Она согласуется со всеми современными наблюдениями. Однако математика в действительности не может оперировать бесконечными числами, поэтому, утверждая, что Вселенная началась с Большого Взрыва, общая теория относительности тем самым предсказывает, что во Вселенной есть точка, где сама эта теория перестает работать. Подобная точка — пример того, что математики называют сингулярностью. Когда теория предсказывает сингулярности типа бесконечной температуры, плотности и кривизны, это свидетельствует о том, что она должна быть как‑то изменена. Общая теория относительности — неполная теория, поскольку она не объясняет, как появилась Вселенная.

Двадцатый век изменил взгляды человека на Вселенную. Мы поняли, какое скромное место занимает наша планета в необъятности Вселенной; обнаружили, что время и пространство искривлены и неотделимы друг от друга; открыли, что Вселенная расширяется и что она имела начало. Однако мы также убедились, что, рисуя новую картину крупномасштабной структуры Вселенной, общая теория относительности терпит неудачу при описании начала времен.

Двадцатое столетие также вызвало к жизни и другую великую частную физическую теорию — квантовую механику. Она имеет дело с явлениями, которые происходят в очень маленьких масштабах. Концепция Большого Взрыва говорит, что, по‑видимому, зарождающаяся Вселенная была настолько мала, что, даже изучая ее «крупномасштабную структуру», нельзя пренебрегать эффектами квантовой механики, важными в микроскопических масштабах. И сегодня самые большие надежды в части окончательного постижения Вселенной мы возлагаем на объединение этих двух частных теорий в единую квантовую теорию гравитации. Далее будет показано, что объединение общей теории относительности с принятым в квантовой механике принципом неопределенности делает возможным существование конечного пространства и времени, не имеющего никаких пределов или границ. И возможно также, что обычные физические законы действуют повсеместно, в том числе и в начале времен, не приводя ни к каким сингулярностям.

Глава девятая

КВАНТОВАЯ ГРАВИТАЦИЯ

Успех научных теорий, особенно теории тяготения Ньютона, привел французского ученого Пьера Симона Лапласа в начале девятнадцатого столетия к убеждению, что Вселенная полностью детерминирована. Иначе говоря, Лаплас полагал, что должен существовать ряд законов природы, которые позволяют — по крайней мере, в принципе — предсказать все, что случится во Вселенной. Для этого требуется «всего лишь» подставить в такие законы полную информацию о состоянии Вселенной в некоторый произвольно выбранный момент времени. Это называется заданием «начального состояния» или «граничных условий». (В случае граничных условий речь идет о границе в пространстве или времени; граничное состояние в пространстве есть состояние Вселенной у внешних ее границ — если таковые имеются.) Лаплас считал, что, располагая полным набором законов и зная начальные или граничные условия, мы сможем в точности определить состояние Вселенной в любой заданный момент времени.

Необходимость знать начальные условия, по‑видимому, интуитивно очевидна: различные текущие состояния, без сомнения, приведут к различным состояниям в будущем. Необходимость знания граничных условий в пространстве чуть труднее для понимания, но в принципе это то же самое. Уравнения, лежащие в основе физических теорий, могут давать весьма разнообразные решения, выбор между которыми основывается на начальных или граничных условиях. Здесь прослеживается отдаленная аналогия с состоянием банковского счета, на который поступают и с которого списываются большие суммы. Закончите вы банкротом или богачом, зависит не только от перечисляемых сумм, но и от начального состояния счета.

Если Лаплас прав, тогда физические законы позволят нам по известному сегодняшнему состоянию Вселенной определить ее состояния в прошлом и будущем. Например, зная положения и скорости Солнца и планет, мы можем при помощи законов Ньютона вычислить состояние Солнечной системы в любой момент прошлого или будущего[11]. В случае планет детерминизм кажется совершенно очевидным — в конце концов, астрономы с очень высокой точностью предсказывают такие события, как затмения. Но Лаплас пошел дальше, предположив, что подобные законы управляют и всем остальным, включая человеческое поведение.

Но действительно ли ученые способны предвычислить все наши будущие действия? Число молекул в стакане воды превышает десять в двадцать четвертой степени (единица с двадцатью четырьмя нуля). На практике мы не имеем ни малейшей надежды узнать состояние каждой из них; еще меньше у нас шансов узнать точное состояние Вселенной или даже своего собственного тела. Так что, говоря о детерминированности Вселенной, мы подразумеваем, что, даже если наших интеллектуальных способностей недостаточно для этих вычислений, наше будущее тем не менее предопределено.

Эта доктрина научного детерминизма решительно отвергалась многими из тех, кто чувствовал, что она нарушает свободу Бога править миром по своей воле. Тем не менее детерминизм оставался в науке общепринятым предположением до начала двадцатого столетия. Одним из первых указаний на то, что от этого принципа придется отказаться, пришло от английских физиков Джона Уильяма Рэлея и Джеймса Джинса, вычисливших количество чернотельного излучения, которое должно испускать всякое нагретое тело, например звезда (в гл. 7 уже упоминалось, что любой материальный объект, будучи нагрет, испускает чернотельное излучение).

Согласно представлениям того времени горячее тело должно было испускать электромагнитные волны одинаково на всех частотах. Будь это так, равные энергии приходились бы на каждый цвет видимого спектра излучения, на каждую частоту микроволнового излучения, радиоволн, рентгеновских лучей и т. д. Напомним, что частотой волны называют число ее колебаний в секунду, то есть число «волн в секунду». Математически утверждение, что горячее тело одинаково испускает волны на всех частотах, означает, что оно излучает одно и то же количество энергии во всех диапазонах частот: от нуля до одного миллиона волн в секунду, от одного до двух миллионов, от двух до трех миллионов и так далее до бесконечности. Иначе говоря, некая единица энергии излучается с волнами, чья частота лежит в диапазоне от нуля до миллиона в секунду и во всех последующих интервалах. Тогда полная энергия, излучаемая на всех частотах, составит один плюс один плюс один… и так до бесконечности. И поскольку нет ограничений на возможное число волн в секунду, это суммирование энергий никогда не закончится. Получается, что полная излучаемая энергия должна быть бесконечной.

Чтобы уйти от этого явно абсурдного вывода, немецкий ученый Макс Планк в 1900 г . предположил, что видимый свет, рентгеновские лучи и другие электромагнитные волны могут испускаться только некоторыми дискретными порциями, которые он назвал «квантами». Сегодня мы называем квант света фотоном. Чем выше частота света, тем больше энергия его фотонов. Поэтому, хотя фотоны любого данного цвета или частоты полностью идентичны, фотоны различных частот согласно Планку несут разное количество энергии. Это означает, что в квантовой теории «самый слабый» свет любого данного цвета — свет, представленный одним‑единственным фотоном, — несет энергию, величина которой зависит от цвета (рис. 23). Например, частоты фиолетового света вдвое выше частот красного, и, следовательно, один квант фиолетового света несет вдвое больше энергии, чем один квант красного. Таким образом, самая маленькая порция фиолетовой световой энергии вдвое больше самой маленькой порции красной.

Рис. 23. «Самый слабый» свет.

Чем меньше фотонов, тем «слабее» свет. «Самый слабый» свет любого цвета — это свет, представленный одним фотоном.

большой взрыв, черные дыры и эволюция вселенной 5 страница - student2.ru

Как это решает проблему абсолютно черного тела? Минимальное количество электромагнитной энергии, которую абсолютно черное тело может испустить на любой заданной частоте, равно энергии одного фотона этой частоты. На более высоких частотах энергия фотонов выше. То есть на высоких частотах самое маленькое количество энергии, которое может испустить абсолютно черное тело, оказывается больше. Для достаточно высокой частоты энергия одного кванта превышает всю энергию тела. На такой частоте свет не испускается, что кладет предел сумме, которая прежде считалась бесконечной. Таким образом, по теории Планка интенсивность излучения на высоких частотах должна снижаться. В результате уровень энергетических потерь тела становится конечной величиной, что и решает проблему абсолютно черного тела.

Квантовая гипотеза очень хорошо объяснила наблюдаемую интенсивность излучения горячих тел, но ее последствия для детерминизма не осознавались до 1926 г ., когда другой немецкий ученый, Вернер Гейзенберг, сформулировал знаменитый принцип неопределенности.

Принцип неопределенности говорит нам, что вопреки убеждениям Лапласа природа ограничивает нашу способность предсказывать будущее на основе физических законов. Дело в том, что для предсказания будущего положения и скорости частицы мы должны иметь возможность измерить ее начальное состояние, то есть ее текущие положение и скорость, причем измерить точно. Для этого, по всей видимости, следует подвергнуть частицу воздействию света. Некоторые из световых волн будут рассеяны частицей и укажут обнаружившему их наблюдателю положение частицы. Однако использование световых волн данной длины накладывает ограничения на точность, с которой определяется положение частицы: точность эта лимитируется расстоянием между гребнями волны. Таким образом, желая как можно точнее измерить положение частицы, вы должны использовать световые волны короткой длины, а значит, высокой частоты. Однако в соответствии с квантовой гипотезой Планка нельзя оперировать произвольно малым количеством света: вам придется задействовать по меньшей мере один квант, энергия которого с увеличением частоты становится больше. Итак, чем точнее вы стремитесь измерить положение частицы, тем выше должна быть энергия кванта света, который вы в нее направляете.

Согласно квантовой теории даже один квант света нарушит движение частицы, непредсказуемым образом изменив ее скорость. И чем выше энергия кванта света, тем больше вероятные возмущения. Стараясь повысить точность измерения положения, вы воспользуетесь квантом более высокой энергии, и скорость частицы претерпит значительные изменения. Чем точнее вы пытаетесь измерить положение частицы, тем менее точно вы можете измерить ее скорость, и наоборот. Гейзенберг показал, что неопределенность положения частицы, помноженная на неопределенность ее скорости и на массу частицы, не может быть меньше некоторой постоянной величины. Значит, уменьшив, например, вдвое неопределенность положения частицы, вы должны удвоить неопределенность ее скорости, и наоборот. Природа навсегда ограничила нас условиями этой сделки.

Насколько плохи данные условия? Это зависит от упомянутой «некоторой постоянной величины». Ее называют постоянной Планка, и она ничтожна мала. Ввиду малости постоянной Планка последствия описанной сделки и квантовой теории в целом, подобно эффектам теории относительности, незаметны в повседневной жизни. (Хотя квантовая теория и влияет на нашу жизнь, будучи основой, в частности, современной электроники.) Например, определив скорость теннисного шарика массой один грамм с точностью до одного сантиметра в секунду, мы можем установить его положение с точностью, намного превосходящей любые практические потребности. Но если измерить положение электрона с точностью примерно до размеров атома, то невозможно определить его скорость с погрешностью меньше, чем плюс‑минус 1000 километров в секунду, что никак не назовешь точным измерением.

Предел, установленный принципом неопределенности, не зависит ни от способа, которым измеряются положение или скорость, ни от типа частицы. Принцип неопределенности Гейзенберга отражает фундаментальное, не допускающее исключений свойство природы, приводящее к глубоким изменениям в наших взглядах на устройство мира. Даже по прошествии семидесяти с лишним лет многие философы не до конца понимают эти изменения, которые все еще остаются предметом значительных разногласий. Принцип неопределенности ознаменовал конец лапласовской мечты о научной теории, модели Вселенной, которая будет полностью детерминистической: невозможно точно предсказать будущие события, если невозможно точно определить даже современное состояние Вселенной!

Мы пока еще можем допустить, что существует некий набор законов, полностью предопределяющий события для некоторого сверхъестественного существа, которое, в отличие от нас, способно наблюдать существующее состояние Вселенной, не нарушая его. Однако такие модели Вселенной не представляют большого интереса для нас, обычных смертных. Представляется разумным использовать так называемый принцип бритвы Оккама и отсечь все элементы теории, которые не имеют наблюдаемых проявлений. Этот подход в 1920‑х гг. привел Гейзенберга, Эрвина Шрёдингера и Поля Дирака к замене ньютоновской механики новой теорией — квантовой механикой, основанной на принципе неопределенности. В этой теории частицы не обладают по отдельности точно определенными положениями и скоростями. Вместо этого они обладают квантовыми состояниями, комбинациями положений и скоростей, которые известны лишь в границах, допускаемых принципом неопределенности.

Одна из революционных особенностей квантовой механики состоит в том, что эта теория не предсказывает единственного определенного результата наблюдения. Она предлагает множество возможных результатов и говорит, насколько вероятен каждый из них. Иными словами, если проделать одинаковые измерения с большим числом однотипных систем, находящихся в одинаковом исходном состоянии, то в некотором числе случаев измерения дадут результат А, еще в каком‑то числе случаев — результат В, и так далее. Можно приблизительно предсказать, сколько раз выпадет результат А или В, но нельзя предсказать определенный результат одного конкретного измерения.

Вообразите, например, что метаете дротики, играя в дартс. Согласно классическим (старым, не квантовым) теориям, дротик либо попадет в яблочко, либо нет. Зная скорость дротика в момент броска, силу тяжести и т. п., вы можете вычислить, попадет ли он в мишень. Однако квантовая теория говорит, что это не так: невозможно сделать такое предсказание наверняка. В соответствии с квантовой теории есть некоторая вероятность того, что дротик угодит в яблочко, и отличная от нуля вероятность, что он вонзится в любой другой участок доски. Имея дело с такими крупными объектами, как в игре в дартс, вы можете быть уверены в прогнозе, если классическая теория — в данном случае механика Ньютона — предсказывает попадание дротика в мишень. По крайней мере, шансы, что этого не случится (согласно квантовой теории), настолько малы, что, продолжая метать дротики тем же манером до конца жизни Вселенной, вы, вероятно, никогда не промазали бы. Но в масштабах атомов все обстоит по‑другому. Вероятность поражения центра мишени дротиком, состоящим из одного атома, равнялась бы 90%, шанс, что он вонзится в другой участок доски, составил бы 5%, и еще 5% пришлось бы на попадание мимо доски. Вы не можете сказать заранее, что именно произойдет. Все, что вы можете, — это утверждать, что при многократном повторении эксперимента в среднем 90 раз из 100 дротик угодит в яблочко.

Наши рекомендации