Сердце есть токовый диполь с дипольным моментом Рс, который поворачивается, изменяет свое положение и точку приложения за время сердечного цикла.
Закон Эйтховена утверждает, что разности потенциалов трёх стандартных отведений подчиняются соотношению V1 + V3 = V2. Закон имеет применение, когда вследствие дефектов записи не удаётся идентифицировать зубцы P, Q, R, S, T и U для одного из отведений; в таких случаях можно вычислить значение разности потенциалов, при условии, если для других отведений получены нормальные данные.
Эйнтховена теория(W. Einthoven) - теория формирования электрокардиограммы, согласно которой сердце рассматривается как бесконечно малый диполь, расположенный в центре треугольника Эйнтховена и непрерывно меняющий величину и направление вектора электродвижущей силы; проекции вектора на каждую из сторон треугольника определяют форму электрокардиограммы в трех стандартных отведениях (с учетом смещения третьего угла на дистальную часть левой голени.
ЭЛЕ́КТРОКАРДИОГРА́ММА (ЭКГ), кривая, отражающая биоэлектрическую активность сердца.
При возбуждении сердца на его поверхности и в его тканях возникает разность потенциалов, закономерно меняющаяся по величине и направлению по мере того, как вовлекаются в возбуждение новые участки сердца. Биоэлектрическая активность разных отделов сердца возникает в строго определенной последовательности, повторяющейся в каждом сердечном цикле возбуждения. Возникающие при этом изменения зарядов поверхности сердца создают в окружающей сердце проводящей среде динамическое электрическое поле, которое может быть зарегистрировано с поверхности тела после соответствующего усиления в виде переменной разности потенциалов. При этом получается характерная кривая, состоящая из нескольких зубцов, разделенных определенными интервалами. Эта кривая получила название электрокардиограммы — ЭКГ. Зубцы ЭКГ обозначаются латинскими буквами P, Q, R, S и T, а соответствующие интервалы, или сегменты, — P-Q, S-T, Q-T. Зубцы и интервалы ЭКГ отражают активацию и процессы восстановления в разных отделах сердца.
21) Переме́нный ток,— электрический ток, который периодически изменяется по модулю и направлению.
Под переменным током также подразумевают ток в обычных одно- и трёхфазных сетях. В этом случае мгновенные значения тока и напряжения изменяются по гармоническому закону.
В устройствах-потребителях постоянного тока переменный ток часто преобразуется выпрямителями для получения постоянного тока.
- Напряжение в сетях переменного тока легко преобразуется от одного уровня к другому путем применения трансформатора.
- Асинхронные электродвигатели переменного тока проще и надежнее двигателей постоянного тока. (90% вырабатываемой электроэнергии потребляется асинхронными электродвигателями
- Переменный ток используется преимущественно для более удобной передачи от генератора до потребителя.
Индуктивное сопротивление в цепи переменного тока | |
В катушке, включенной в цепь переменного напряжения, сила тока меньше силы тока в цепи постоянного напряжения для этой же катушки. Следовательно, катушка в цепи переменного напряжения создает большее сопротивление, чем в цепи постоянного напряжения. | |
Мгновенное значение силы тока: | |
Мгновенное значение напряжения можно установить, учитывая, что u = - ei, где u – мгновенное значение напряжения, а ei – мгновенное значение эдс самоиндукции, т. е. при изменении тока в цепи возникает ЭДС самоиндукции, которая в соответствии с законом электромагнитной индукции и правилом Ленца равна по величине и противоположна по фазе приложенному напряжению. | |
. Следовательно где амплитуда напряжения. Напряжение опережает ток по фазе на p/2. | |
Т.к. согласно закону Ома сила тока прямо пропорциональна напряжению и обратно пропорциональная сопротивлению, то приняв величину wL за сопротивление катушки переменному току, получим: - закон Ома для цепи с чисто индуктивной нагрузкой. | |
Величина - индуктивное сопротивление. | |
Т.о. в любое мгновение времени изменению силы тока противодействует ЭДС самоиндукции. ЭДС самоиндукции — причина индуктивного сопротивления. | |
В отличие от активного сопротивления, индуктивное не является характеристикой проводника, т.к. зависит от параметров цепи (частоты): чем больше частота переменного тока, тем больше сопротивление, которое ему оказывает катушка. | |
Т.к. разность фаз между колебаниями тока и напряжения равна p/2, то мощность в цепи равна 0: энергия не расходуется, а происходит обмен энергией между источником напряжения и индуктивной нагрузкой. Такая нагрузка наз. реактивной. |
Ток, напряжение и э. д. с. самоиндукции. При включении в цепь переменного тока индуктивности (катушки индуктивности, потерями в которой можно пренебречь) (рис. 178, а) изменяющийся ток непрерывно индуцирует в ней э. д. с. самоиндукции
eL = -L ?i / ?t (68)
где ?i/?t— скорость изменения тока.
Рассматривая график изменения силы тока i (рис. 178,б), можно установить, что скорость его изменения ?i/?t будет наибольшей в моменты времени, когда угол ? равен 0; 180 и 360°. Следовательно, в эти минуты времени э. д. с. имеет наибольшее значение. В моменты времени, когда угол ?t равен 90° и 270°, скорость изменения тока ?i/?t = 0 и поэтому э. д. с. eL = 0.
Э. д. с. самоиндукции е согласно правилу Ленца направлена так, чтобы препятствовать изменению тока. Поэтому в первую четверть периода, когда ток i увеличивается, э. д. с. eL имеет отрицательное значение (направлена против тока); во вторую четверть периода, когда ток i уменьшается, э. д. с. eLимеет положительное значение (совпадает по направлению с током). В третью четверть периода ток i изменяет свое направление и увеличивается, поэтому э. д. с. самоиндукции eL направлена против тока и имеет положительное значение. В четвертую четверть периода ток i уменьшается и э. д. с. самоиндукции eL стремится поддержать прежнее направление тока, т. е. имеет отрицательное значение. Таким образом, э. д. с. самоиндукции eL отстает по фазе от тока i на угол 90°.
Так как в цепи, куда включена индуктивность L, отсутствует активное сопротивление (рассматривается идеальная катушка индуктивности), то по второму закону Кирхгофа u+eL=0, т. е. u = -eL Следовательно, напряжение источника всегда равно по величине и противоположно по направлению э. д. с. самоиндукции.
Из рассмотрения кривых (см. рис. 178,б) видно, что кривая напряжения и сдвинута относительно кривой силы тока i на четверть периода, т. е. на угол 90°. При этом напряжение достигает наибольших и нулевых значений раньше, чем ток. Следовательно,
Рис. 178. Схема включения в цепь переменного тока индуктивности (а), кривые тока I, напряжения и, э.д.с. eL (б) и векторная диаграмма (в)
при включении в цепь переменного тока индуктивности ток i отстает по фазе от напряжения и на угол 90° или, что то же самое, напряжение и опережает ток по фазе на угол 90° (рис. 178, в).
Индуктивное сопротивление. Сопротивление катушки или проводника переменному току, вызванное действием э. д. с. самоиндукции, называется индуктивным сопротивлением. Оно обозначается XL и измеряется в омах. Физическая природа индуктивного сопротивления совершенно другая, чем активного. Э. д. с. самоиндукции eL направлена против приложенного напряжения u, которое заставляет изменяться ток; согласно закону Ленца она препятствует изменению тока i, т. е. оказывает прохождению переменного тока определенное сопротивление.
Чем большая э. д. с. самоиндукции eL индуцируется в проводнике (катушке), тем большее они имеют индуктивное сопротивление XL. Э. д. с. самоиндукции согласно формуле (68) прямо пропорциональна индуктивности L и скорости изменения тока ?i/?t, т. е. частоте его изменения f (значению ?). Поэтому индуктивное сопротивление
XL = ?L
Следовательно, индуктивное сопротивление не зависит от материала, из которого изготовлен проводник (катушка), и от площади поперечного сечения проводника.
Закон Ома для цепи с индуктивностью
I = U / xL = U / (?L)
Электрическая мощность.Рассмотрим, как изменяется электрическая мощность в цепи переменного тока с индуктивностью. Мгновенное значение мощности р, равное произведению мгновенных значений силы тока i и напряжения и, можно получить графическим путем, перемножая ординаты кривых тока и напряжения при различных углах ?t. Кривая мгновенной мощности р (рис. 179, а) представляет собой синусоиду, которая изменяется с двойной частотой 2? по сравнению с частотой изменения тока i и напряжения и.
При рассмотрении этой кривой видно, что мощность р может иметь положительные и отрицательные значения. В течение первой четверти периода ток и напряжение положительны и мощность p = ui также положительна. Во второй четверти периода ток положителен, а напряжение отрицательно; следовательно, мощность р будет отрицательна. В течение третьей четверти периода мощность снова становится положительной, а в течение четвертой четверти — отрицательной.
Понятие положительной и отрицательной электрической мощности физически определяет направление потока энергии. Положительный знак мощности означает, что электрическая энергия W передается от источника к приемнику; отрицательный знак мощности означает, что электрическая энергия W переходит от приемника к источнику. Следовательно, при включении в цепь переменного тока индуктивности возникает непрерывный колебательный процесс обмена энергией между источником и индуктивностью, при котором не создается никакой работы. В первую и третью четверти периода мощность положительна, т. е. индуктивность получает энергию W от источника (см. стрелки W) и накапливает ее в своем магнитном поле. Во вторую и четвертую четверти периода индуктивность отдает накопленную энергию W источнику. При этом протекание по цепи тока поддерживается благодаря действию э.д. с. самоиндукции eL.
Таким образом, в целом за период в индуктивное сопротивление не поступает электрическая энергия (на это указывает то, что среднее значение мощности за период равно нулю). Для того чтобы подчеркнуть указанную особенность индуктивного сопротивления, его относят к группе реактивных сопротивлений, т. е. сопротивлений, которые в цепи переменного тока в целом за период не потребляют электрической энергии. Следует отметить, что в реальные катушки индуктивности поступает некоторая энергия от источника переменного тока из-за наличия активного сопротивления проводов, из которых выполнены эти катушки. Эта энергия превращается в тепло.
Рис. 179. Кривые тока i, напряжения u и мощности р при включении в цепь переменного тока катушки индуктивности (а) и конденсатора (б)
Рис. 180. Последовательное (а) и параллельное (б) соединения катушек индуктивности
Так как среднее значение мощности в цепи с индуктивностью равно нулю, для характеристики процесса обмена энергией между источником и индуктивностью введено понятие реактивной мощности индуктивности:
QL = ULI
где UL — напряжение, приложенное к индуктивности L (действующее значение).
Реактивная мощность измеряется в варах (вар) и киловарах (квар). Наименование единицы происходит от первых букв слов вольт-амперреактивный. Реактивную мощность можно выразить также в виде
QL = U2L/XL или QL = I2XL
Способы соединения катушек индуктивности. В цепях переменного тока приходится соединять катушки индуктивности последовательно и параллельно.
При последовательном соединении катушек индуктивности эквивалентная индуктивность Lэк равна сумме индуктивностей; например, при трех катушках с индуктивностями L1, L2 и L3 (рис. 180, а)
Lэк = L1+ L2 + L3
В этом случае эквивалентное индуктивное сопротивление
XLэк = XL1+ XL2 + XL3
При параллельном соединении катушек индуктивности (рис. 180,б) для эквивалентной индуктивности имеем:
1 /Lэк = 1 /L1 + 1 /L2 + 1 /L3
для эквивалентного индуктивного сопротивления
1 /XLэк = 1 /XL1 + 1 /XL2 + 1 /XL3
22) Реография ) — метод исследования пульсовых колебаний кровенаполнения сосудов различных органов и тканей, основанный на графической регистрации изменений полного электрического сопротивления тканей.
Применяется в диагностике различного рода сосудистых нарушений головного мозга, конечностей, лёгких, сердца, печени и др.Электрокардиография-это регистрация электрических процесов сердечной мышцы при ее возбуждении.
Реография глазная — офтальмореография.
Реография поперечная — реография конечности, при которой электроды располагают на одном уровне относительно её продольной оси; используется для оценки функциикровеносных сосудов определённой части конечности.
Реография продольная — реография конечности, при которой электроды располагают по её продольной оси; используется для оценки функции кровеносных сосудов всей конечности.