Статистическое толкование второго начала термодинамики.
Энтропия изолированной системы может только возрастать либо оставаться неизменной. dS³0.
Энтропия в термодинамике. Сумма приведённых количеств тепла, полученных системой при переходе из одного состояния в другое не зависит от процесса, при котором это происходит, поэтому dQ/T представляет собой приращение некоторой функции состояния. Эта функция называется энтропией. dS=(dQ/T)обр. Свойства энтропии. 1. dS³dQ/T. 2. Энтропия изолированной системы может только возрастать, так как теплоизолированная система dQ=0, dS³0. 3. Для обратимых процессов dQ=0, dS=0, S=const.
Статистическое толкование энтропии. 1. Энтропия изолированной системы при протекании необратимого процесса возрастает. Действительно изолированная система переходит из менее вероятных в более вероятные состояния, что сопровождается ростом величины S=k×lnW, где W - это статистический вес, то есть количество способов, которым может быть осуществлено данное состояние. 2. Энтропия системы, находящейся в равновесном состоянии, максимальна.
19. Закон Максвелла для распределения молекул идеального газа по скоростям теплового движения. Вероятностное толкование закона распределения Максвелла.
Закон Максвелла для распределения молекул идеального газа по скоростям теплового движения. В 1860 году Максвелл теоретически установил распределение молекул идеального газа по скоростям теплового движения и записал в виде F(v)=f(v)4pv2 и позже получил то, что впоследствии назвал формулой распределения молекул идеального газа по скоростям теплового движения. Она имеет вид F(v)=(m/(2pkT))3/2exp(-mv2/(2kT))4pv2.
Вероятностное толкование закона распределения Максвелла. Выражение dNv=Nf(v)4pv2dv даёт число молекул, величина скоростей которых лежит в интервале от v до v+dv. Разделив его на n получим вероятность того, что скорость молекулы окажется между v и v+dv, то есть dPv=f(v)4pv2dv.
20. Барометрическая формула. Закон Больцмана для распределения частиц идеального газа во внешнем потенциальном поле.
Барометрическая формула. p=p0exp(-(Mgh)/(RT)). Эта формула называется барометрической. Из неё следует, что давление убывает с высотой тем быстрее, чем тяжелее газ (чем больше M) и чем ниже температура.
Закон Больцмана для распределения частиц идеального газа во внешнем потенциальном поле. n=n0exp(-ep/(kT)) Больцман доказал, что это распределение справедливо не только в случае потенциальных сил земного тяготения, но и в любом потенциальном поле сил совокупности любых одинаковых частиц, находящихся в состоянии хаотического движения. В соответствии с этим это распределение было названо законом Больцмана для распределения частиц идеального газа во внешнем потенциальном поле.
21. Среднее число столкновений и средняя длина свободного пробега молекул идеального газа. Эффективный диаметр молекулы.
Средним числом столкновений молекул идеального газа за одну секунду называется величина, равная <z>=Ö(2)×pd2n<v>.
Средней длиной свободного пробега молекул идеального газа называется величина равная l=<v>/<z>=1/(Ö(2)×pd2n).
Эффективный диаметр молекулd - это минимальное расстояние, на которое сближаются при столкновении центры двух молекул. Величина s=pd2 называется эффективным сечением молекулы.
22. Явления переноса. Теплопроводность, диффузия, вязкость.
Теплопроводность — это перенос теплоты структурными частицами вещества (молекулами, атомами, электронами) в процессе их теплового движения.
Численная характеристика теплопроводности материала равна количеству теплоты, проходящей через материал толщиной 1 м и площадью 1 кв.м за час при разности температур на двух противоположных поверхностях в 1 К.
Диффузия ‑ взаимное проникновение соприкасающихся веществ друг в друга вследствие теплового движения частиц вещества. Диффузия происходит в направлении падения концентрации вещества и ведёт к равномерному распределению вещества по всему занимаемому им объёму.
Вязкость ‑ свойство газов и жидкостей оказывать сопротивление необратимому перемещению одной их части относительно другой при сдвиге, растяжении и др. видах деформации. Вязкость характеризуют интенсивностью работы, затрачиваемой на осуществление течения газа или жидкости с определенной скоростью.
23. Реальные газы. Силы и потенциальная энергия межмолекулярного взаимодействия. Уравнение Ван-дер-Ваальса. Изотермы реального газа. Критическое состояние. (Внутренняя энергия реального газа.)
Реальные газы. Поведение реальных газов хорошо описывается уравнением pVM=RT только при слабых силах межмолекулярного взаимодействия. Реальный газ - это газ, между молекулами которого существуют заметные силы межмолекулярного взаимодействия. Для описания свойств реального газа используются уравнения, отличающиеся от уравнения Клаперона-Менделеева.