Вселенная на булавочной головке (и почему мы не проваливаемся сквозь землю) 5 страница
Независимо от деталей можно сказать, что в нашем методе подсчета вероятностей нахождения одинокой частицы где‑то во Вселенной есть всего два ключевых момента. Во‑первых, нужно указать набор исходных циферблатов, заключающих в себе информацию о том, где частица может находиться в нулевое время. Во‑вторых, нужно знать пропагатор P (A, B, T ), который сам выступает в роли циферблата, заключающего в себе правило перевода и уменьшения для частицы, перескакивающей из точки А в точку В . Если мы знаем, как выглядит пропагатор для любой пары исходных и конечных точек, то мы знаем все, что нужно знать, и можем с уверенностью высчитать величественно скучную динамику Вселенной, содержащей одну частицу. Впрочем, к ней нельзя относиться пренебрежительно, потому что такое простое положение дел слабо запутывается, когда в игру вступает взаимодействие частиц. Введем же его.
На рис. 10.1 графически изображены все ключевые идеи, которые мы хотим здесь обсудить. Это наше первое знакомство с диаграммами Фейнмана – средством расчета профессионального специалиста по физике частиц. Наша задача: найти вероятность обнаружения пары электронов в точках Х и Y в некоторое время Т . Сначала нам сообщается, где электроны находятся в нулевое время, то есть как выглядят исходные поля циферблатов. Это важно, потому что способность ответить на подобный вопрос эквивалентна способности узнать, «что происходит во Вселенной, содержащей два электрона». Кажется, в этом нет особого прогресса, но теперь весь мир у нас в кармане, потому что мы можем узнать, как основные строительные кирпичики природы взаимодействуют друг с другом.
Рис. 10.1. Некоторые способы распада пары электронов. Электроны начинают движение слева и всегда заканчивают его в одной и той же паре точек, X и Y , во время T . Эти графики соответствуют нескольким различным способам, которыми частицы могут достичь точек X и Y
Для упрощения мы изобразили лишь одно измерение пространства, и время движется слева направо. Это никак не скажется на наших умозаключениях. Начнем с описания первой серии графиков на рис. 10.1. Мелкие точки в T = 0 соотносятся с возможными местоположениями двух электронов в нулевое время. Для иллюстративных целей предположим, что верхний электрон может находиться в одном из трех мест, в то время как нижний – в одном из двух (в реальном мире нам пришлось бы иметь дело с электронами, которые могут находиться в бесконечном количестве мест, но если бы пришлось это зарисовать, то кончились бы чернила).
Верхний электрон перескакивает в точку A в некоторое более позднее время и одновременно делает очень интересную вещь: он испускает фотон (на рисунке представлен волнистой линией).
После этого фотон перескакивает в точку В , где поглощается другим электроном. Верхний электрон затем перескакивает из точки А в точку Х , а нижний – из точки В в точку Y . Это всего лишь один из бесконечного множества вариантов перехода исходной пары электронов в точки Х и Y . Мы можем связать циферблат со всем процессом – назовем его «циферблат 1», сокращенно С 1. QED должна дать нам правила игры, позволяющие вычислить этот циферблат.
Прежде чем углубляться в детали, разберемся, как это должно происходить. На самом верхнем рисунке представлен один из мириадов способов, которыми исходная пара электронов может попасть в точки Х и Y . На других рисунках представлены иные способы. Основная идея в том, что для каждого возможного способа попадания электронов в точки Х и Y мы должны определить квантовый циферблат – уже упомянутый С 1 будет лишь первым в длинной череде циферблатов[45]. Когда все циферблаты определены, нужно сложить их и получить один «главный» циферблат. Размер этого циферблата (возведенный в квадрат) укажет на вероятность нахождения пары электронов в точках Х и Y . Итак, мы снова должны представить, что электроны движутся к точкам Х и Y не по какому‑то определенному маршруту, а скорее рассеиваются всеми способами сразу. На последних нескольких рисунках можно увидеть ряд более изощренных способов рассеивания электронов. Электроны не только обмениваются фотонами – они могут испускать и снова поглощать собственные фотоны, а на последних двух рисунках вообще происходит нечто странное. На них показан сценарий, при котором кажется, что фотон испускает электрон, который «ходит по кругу», прежде чем заканчивает свой путь там же, где начал: более подробно об этом мы скажем чуть позже. Сейчас же можно просто представить ряд все более сложных диаграмм, соответствующих случаям, при которых электроны испускают и поглощают большое количество фотонов, прежде чем в итоге завершают путь в точках Х и Y . Придется рассматривать многочисленные пути, которые могут окончиться для электронов в точках Х и Y , но два правила формулируются очень четко: электроны могут только перескакивать с места на место и испускать или поглощать один фотон. Вот и все: электроны могут перескакивать или расширяться. Более подробное рассмотрение показывает, что ни один из приведенных выше рисунков не нарушает двух этих правил, потому что на них не изображено ничего более сложного, чем сочленение двух электронов и фотона. Сейчас мы должны объяснить, как определять соответствующие циферблаты – один для каждой диаграммы на рис. 10.1.
Сосредоточимся на самой верхней диаграмме и посмотрим, как определить внешний вид связанного с нею циферблата (циферблат С 1). В самом начале процесса есть два электрона, и каждый из них имеет свой циферблат. Следует начать с их перемножения в соответствии с правилом умножения циферблатов. Мы получим новый единый циферблат, который обозначим буквой С . Умножение циферблатов имеет смысл, потому что нельзя забывать – циферблаты служат для обозначения вероятностей, а если имеются две независимые вероятности, то способом их сочетания будет перемножение. Например, вероятность выпадения орла на двух монетах будет равна ½ × ½ = ¼. Точно так же получающийся в результате циферблат С указывает на вероятность того, что два электрона будут находиться на исходных позициях. Остальное тоже связано с умножением циферблатов. Верхний электрон перескакивает в точку А , так что существует связанный с этим циферблат; назовем его P (1, A ), то есть «частица – particle – 1 перескакивает в точку А ». Тем временем нижний электрон перескакивает в точку В , и для этого тоже есть свой циферблат, который мы назовем P (2, B ). Точно так же имеются еще два циферблата, соответствующие переходу электронов в конечные точки; их мы обозначим как P (A, X ) и P (B, Y ). Наконец, существует и циферблат, связанный с фотоном, который перескакивает из точки А в точку В . Поскольку фотон – это не электрон, правило распространения фотона должно отличаться от правила распространения электрона, так что для его циферблата нужно использовать другой символ. Обозначим циферблат, соответствующий скачку фотона, как L (A, B )[46]. Теперь мы попросту перемножаем все циферблаты, получая один «главный»: R = C P (1, A ) × P (2, B ) × P (A, X ) × P (B, Y ) × L (A, B ). Мы уже близки к успеху, но нужно еще немного уменьшить циферблаты, потому что правило QED по поводу того, что происходит, когда электрон испускает или поглощает фотон, говорит о необходимости введения уменьшающего коэффициента g . На нашей диаграмме верхний электрон испускает фотон, а нижний его впитывает, так что коэффициентов становится два, и мы используем величину g ². Теперь все действительно готово: конечный «циферблат 1» получается с помощью формулы C 1 = g ² × R .
Уменьшающий коэффициент, возможно, выглядит немного произвольно, но имеет очень важную физическую интерпретацию. Он очевидным образом связан с вероятностью испускания электроном фотона, так что отражает величину электромагнитной силы. Где‑то в наших вычислениях мы должны были задать связь с реальным миром, потому что сейчас высчитываем реальные вещи. И как ньютонова гравитационная постоянная G несет в себе всю информацию о силе гравитации, так g несет всю информацию о величине электромагнитной силы[47].
Если бы мы проводили полные расчеты, сейчас пришлось бы обратиться к следующей диаграмме, отображающей иной способ достижения той же парой электронов тех же точек Х и Y . Вторая диаграмма очень напоминает первую: электроны начинают свой путь из тех же точек, только на этот раз верхний электрон испускает фотон в другой точке пространства и в другое время, а нижний электрон впитывает этот фотон тоже в другое время и в другой точке пространства. Все остальное происходит точно так же, и мы получаем второй циферблат – «циферблат 2», обозначаемый «С 2». Мы продолжаем снова и снова повторять всю процедуру для каждого и любого возможного места испускания электрона и каждого и любого возможного места его поглощения. Мы должны также принять во внимание, что электроны могут начинать движение из нескольких различных исходных точек. Основная идея в том, что нужно учесть каждый и любой способ доставки электронов в точки Х и Y и ассоциировать все эти способы со своими циферблатами. Собрав все циферблаты, мы «просто» складываем их, получая один конечный циферблат, размер которого указывает на вероятность нахождения одного электрона в точке Х и второго – в точке Y . Теперь мы закончили, и нам предстоит выяснить, как два электрона взаимодействуют друг с другом, хотя другого выхода, кроме как подсчитывать вероятности, нет.
То, что мы описали, – это самое ядро квантовой электродинамики, другие силы природы можно описать примерно схожим образом. Мы вернемся к этому чуть позже, пока же нужно поговорить кое о чем еще.
Сначала – абзац с описанием двух небольших, но важных деталей. Во‑первых, мы упростили суть дела, проигнорировав то, что у электронов есть спин и что они по этому признаку делятся на два типа. Кроме того, спин есть и у фотонов (это бозоны), которые делятся на три типа. Это немного затрудняет вычисления, потому что мы должны следить, с какими типами фотонов и электронов имеем дело на каждой стадии перехода и рассеивания. Во‑вторых, если вы внимательно читали, могли заметить знаки минуса перед парой диаграмм на рис. 10.1. Они стоят там, потому что мы говорим об идентичных электронах, перескакивающих из точки Х в точку Y , а две диаграммы со знаками минуса соответствуют взаимному обмену электронов по сравнению с другими диаграммами, то есть электрон, который начал движение из верхнего поля точек, завершает его в точке Y , а второй, нижний электрон оказывается в точке Х . И как мы уже говорили в главе 7, такая смена конфигураций сочетается только после дополнительного перевода циферблата на 6 часов – отсюда и знак минуса.
Не исключено, что вы заметили и возможный недостаток в нашем плане: существует бесконечное количество диаграмм, описывающих варианты перехода частиц из точки Х в точку Y , и суммирование бесконечного количества циферблатов может оказаться, мягко говоря, изнурительным занятием. К счастью, при каждом рассеянии пары электрон – фотон в расчеты входит еще один множитель – g , что уменьшает размер итогового циферблата. Это значит, что чем сложнее диаграмма, тем меньше соответствующий циферблат и тем менее важен он для итогового циферблата. Для квантовой электродинамики величина g довольно мала (около 0,3), так что уменьшение при увеличении числа рассеяний становится намного более явным. Очень часто достаточно учесть только такие диаграммы, как первые пять на рис. 10.1, где рассеяний не более двух, что экономит множество усилий.
Такой процесс вычисления циферблатов (на научном жаргоне известный как «амплитуда») для каждой диаграммы Фейнмана, суммирование всех циферблатов и возведение полученного итогового циферблата в квадрат с целью определения вероятности протекания процесса – это хлеб с маслом современной физики частиц.
Но под поверхностью всего, что мы сказали, таится загадочная проблема, которая очень сильно беспокоит одних физиков и совершенно безразлична другим.