Изучение вентильного фотоэффекта

Лабораторная работа № 58

Цель работы:

1. Ознакомиться с явлением вентильного фотоэффекта.

2. Исследовать характеристики вентильного фотоэлемента.

Теоретическое введение

Вентильный фотоэффект заключается в возникновении фото-ЭДС в выпрямляющем контакте при его освещении. Наибольшее практическое применение имеет вентильный фотоэффект, наблюдаемый в р-n переходе.

В области границы раздела полупроводников р-типа и n-типа образуется так называемый запирающий слой, обедненный основными носителями заряда - электронами со стороны электронного полупроводника и дырками - со стороны дырочного полупроводника. Ионы донорных и акцепторных примесей этого слоя соответственно создают положительный объемный заряд в n-области и отрицательный - в р-области. Между р- и n- областями возникает контактная разность потенциалов, препятствующая движению основных носителей.

изучение вентильного фотоэффекта - student2.ru
При освещении р-n перехода, например, со стороны р-области светом, энергия кванта которого достаточна для образования пары электрон-дырка, вблизи границы р-n перехода образуются так называемые фотоэлектроны и фотодырки (внутренний фотоэффект). Образовавшиеся в р-области носители участвуют в тепловом движении и перемещаются в различных направлениях, в том числе и к р-n переходу. Однако из-за наличия контактной разности потенциалов дырки не перейдут в n-область. Электроны же, напротив, будут затягиваться полем в n-область (рисунок 1).

Если цепь фотоэлемента разомкнута (Rн = ∞, режим холостого хода), то накопление фотоэлектронов в n-области и фотодырок в р-области приводит к появлению дополнительной разности потенциалов между электродами фотоэлемента. Эта разность потенциалов носит название фото-ЭДС (Uф хх). Накопление неравновесных носителей в соответствующих областях не может продолжаться беспредельно, так как одновременно происходит понижение высоты потенциального барьера на величину возникшей фото-ЭДС. Уменьшение же высоты потенциального барьера или уменьшение результирующей напряженности электрического поля ухудшает "разделительные" свойства p-n перехода.

Если замкнуть электроды фотоэлемента накоротко (R н = 0), то образованные светом носители заряда будут циркулировать в цепи фотоэлемента, создавая фототок короткого замыкания I ф кз. Величина фото-ЭДС холостого хода Uф хх и сила фототока короткого замыкания I ф кз определяются концентрацией образованных светом носителей заряда, которая, в свою очередь, зависит от освещенности фотоэлемента Е.

изучение вентильного фотоэффекта - student2.ru Зависимости фототока I ф кз и фото-ЭДС Uф хх от освещенности фотоэлемента E (или от светового потока Ф = E∙S, где S - площадь приемной поверхности фотоэлемента) называются световыми характеристиками фотоэлемента (рисунок 2).

Из сказанного выше следует, что вентильный фотоэлемент позволяет осуществить непосредственное превращение лучистой энергии в электрическую. Для того, чтобы использовать полученную электрическую энергию, нужно включить в цепь фотоэлемента нагрузочное сопротивление Rн. На этом сопротивлении будет выделятся полезная мощность

P = I∙U = I2∙Rн, (1)

где I - сила тока в цепи фотоэлемента (I < Iф кз), А,

U - напряжение на контактах фотоэлемента (U< Uф хх), В.

Сила тока I, напряжение U, а следовательно, и мощность P при постоянной освещенности определяется величиной нагрузочного сопротивления Rн. Изменяя сопротивление Rн от ∞ до 0, можно получить зависимость U(I), которая носит название нагрузочной характеристики вентильного фотоэлемента (рисунок 3).

изучение вентильного фотоэффекта - student2.ru Уменьшение напряжения на выводах фотоэлемента с ростом тока нагрузки связано с потерей напряжения на внутреннем сопротивлении фотоэлемента. В режиме короткого замыкания, когда Rн равно нулю, все развиваемое фотоэлементом напряжение Uф хх падает на внутреннем сопротивлении, и напряжение на выходе фотоэлемента также равно нулю.

На практике нагрузочное сопротивление подбирают таким образом, чтобы выделяемая на нем мощность была максимальной. При этом максимального (для данной освещенности) значения достигает и коэффициент полезного действия вентильного фотоэлемента, который определяется соотношением

η = P∙Ψ / Ф = P∙Ψ / (E∙S), (2)

где Ψ- так называемая световая отдача, которая для волны длиной λ = 535 нм равна 628 лм/Вт.

Вентильные фотоэлементы изготовляют из селена, кремния, германия, сернистого серебра и других полупроводниковых материалов. Они находят широкое применение в автоматике, измерительной технике, счетно-решающих механизмах и других устройствах. Например, селеновые фотоэлементы, спектральная чувствительность которых близка к спектральной чувствительности человеческого глаза, используются в фотометрических приборах (экспонометрах, фотометрах и др.).

Кремниевые фотоэлементы находят широкое применение в качестве преобразователей солнечной энергии в электрическую. КПД кремниевых фотоэлементов составляет ≈ 12 %. Большое количество фотоэлементов, соединенных между собой, образуют солнечную батарею. Напряжение солнечных батарей достигает десятков вольт, а мощность - десятков киловатт. Солнечные батареи служат основным источником энергопитания космических летательных аппаратов.

 
  изучение вентильного фотоэффекта - student2.ru

Описание установки

изучение вентильного фотоэффекта - student2.ru Кремниевый вентильный фотоэлемент представляет собой вырезанную из монокристалла пластинку кремния n-типа, на поверхности которой путем прогрева при температуре примерно равной 12000C в парах BCl3 сформирована тонкая пленка кремния р-типа. Фотоэлемент закреплен на оптической скамье, по которой передвигается источник света. Изменяя расстояние между поверхностью фотоэлемента и источником света, можно менять освещенность фотоэлемента. Значение освещенности E(l), соответствующее расстоянию l между осветителем и фотоэлементом, определяется по градуировочной ривой (рисунок 5).

Схема для исследования характеристик фотоэлемента изображена на рисунке 6.

 
  изучение вентильного фотоэффекта - student2.ru

Измерение напряжения на фотоэлементе производится вольтметром PU, измерение тока, отдаваемого фотоэлементом – микроамперметром PA. Если ключ S разомкнут, то фотоэлемент работает в режиме холостого хода, если замкнут – в режиме нагрузки. Величина нагрузки регулируется магазином сопротивлений R. Чем меньше сопротивление магазина, тем нагрузка больше. При R = 0 фотоэлемент работает в режиме короткого замыкания.

Наши рекомендации