Постулаты специальной (частной) теории относительности
Классическая механика Ньютона прекрасно описывает движение макротел, движущихся с малыми скоростями (υ << c). Однако в конце XIX в. выяснилось, что выводы классической механики противоречат некоторым опытным данным, в частности при изучении движения быстрых заряженных частиц оказалось, что их движение не подчиняется законам механики. Далее возникли затруднения при попытках применить механику Ньютона к объяснению распространения света. Если источник и приемник света движутся друг относительно друга равномерно и прямолинейно, то, согласно классической механике, измеренная скорость должна зависеть от относительной скорости их движения. Американский физик А. Майкельсон в своем знаменитом опыте в 1881 г., а затем в 1887 г. совместно с Е. Морли - опыт Майкельсона - Морли- пытался обнаружить движение Земли относительно эфира (эфирный ветер), применяя интерферометр Майкельсона. Обнаружить эфирный ветер Майкельсону не удалось, как, впрочем, не удалось его обнаружить и в других многочисленных опытах. Опыты «упрямо» показывали, что скорости света в двух движущихся друг относительно друга системах равны. Это противоречило правилу сложения скоростей классической механики.
Одновременно было показано противоречие между классической теорией и уравнениями Максвелла, лежащими в основе понимания света как электромагнитной волны.
Для объяснения этих и некоторых других опытных данных необходимо было создать новую механику, которая, объясняя эти факты, содержала бы ньютоновскую механику как предельный случай для малых скоростей (υ<< c). Это и удалось сделать А. Эйнштейну, который заложил основы специальной теории относительности.Эта теория представляет собой современную физическую теорию пространства и времени, в которой, как и в классической ньютоновской механике, предполагается, что время однородно, а пространство однородно и изотропно. Специальная теория относительности часто называется также релятивистской теорией,а специфические явления, описываемые этой теорией, - релятивистскими эффектами.
В основе специальной теории относительности лежат постулаты Эйнштейна,сформулированные им в 1905 г.
I.Принцип относительности:никакие опыты (механические, электрические, оптические), проведенные внутри данной инерциальной системы отсчета, не дают возможности обнаружить, покоится ли эта система или движется равномерно и прямолинейно; все законы природы инвариантны по отношению к переходу от одной инерциальной системы отсчета к другой.
II.Принцип инвариантности скорости света:скорость света в вакууме не зависит от скорости движения источника света или наблюдателя и одинакова во всех инерциальных системах отсчета.
Первый постулат Эйнштейна, являясь обобщением механического принципа относительности Галилея на любые физические процессы, утверждает, таким образом, что физические законы инвариантны по отношению к выбору инерциальной системы отсчета, а уравнения, описывающие эти законы, одинаковы по форме во всех инерциальных системах отсчета. Согласно этому постулату, все инерциальные системы отсчета совершенно равноправны, т. е. явления (механические, электродинамические, оптические и др.) во всех инерциальных системах отсчета протекают одинаково.
Согласно второму постулату Эйнштейна, постоянство скорости света - фундаментальное свойство природы, которое констатируется как опытный факт.
Преобразования Лоренца
Анализ явлений в инерциальных системах отсчета, проведенный А. Эйнштейном на основе сформулированных им постулатов, показал, что классические преобразования Галилея несовместимы с ними и, следовательно, должны быть заменены преобразованиями, удовлетворяющими постулатам теории относительности.
Эти преобразования предложены Лоренцом в 1904 г., еще до появления теории относительности, как преобразования, относительно которых уравнения Максвелла инвариантны.
Рассмотрим две инерциальные системы отсчета: К (с координатами x,y, z) и К' (с координатами x′, y′, z′), движущуюся относительно К вдоль оси x со скоростью = const (рис.5.2).
Преобразования Лоренцав этом случае имеют вид
К К' К′′ К
x′ = , x = ,
y′ = y, y = y′, (5.5)
z′ = z, z = z′,
t′ = , t = ,
β = υ/c.
Из сравнения приведенных уравнений вытекает, что они симметричны и отличаются лишь знаком при . Это очевидно, так как если скорость движения системы К' относительно системы К равна , то скорость движения К относительно К' равна (- ).
Из преобразований Лоренца вытекает также, что при малых скоростях (по сравнению со скоростью света), они переходят в классические преобразования Галилея.
Из преобразований Лоренца следует очень важный вывод о том, что как расстояние, так и промежуток времени между двумя событиями меняются при переходе от одной инерциальной системы отсчета к другой, в то время как в рамках преобразований Галилея эти величины считались абсолютными, не изменяющимися при переходе от системы к системе. Таким образом, теория Эйнштейна оперирует не с трехмерным пространством, к которому присоединяется понятие времени, а рассматривает неразрывно связанные пространственные и временные координаты, образующие четырехмерное пространство-время.