Вывод принципа неопределенности Гейзенберга из теории циферблатов
Вместо того чтобы начать с частицы в определенной точке, подумаем лучше о ситуации, когда мы лишь примерно знаем, где находится частица, но точное ее местоположение неизвестно. Если она где‑то в небольшой области пространства, нужно представить ее в виде ряда циферблатов, занимающих всю эту область. В каждой его точке будет находиться по циферблату, и эти циферблаты отразят вероятность, с которой частицу можно найти в этой точке. Если мы возведем в квадрат длины всех стрелок этих циферблатов в каждой точке и сложим, то получим 1, то есть вероятность найти частицу где‑то в этой области равна 100 %.
Через некоторое время мы воспользуемся собственными квантовыми правилами для серьезных вычислений, но сначала вынуждены признаться, что забыли упомянуть важное дополнение к правилу поворота стрелок. Мы не хотели вводить его раньше, потому что это чисто техническая деталь, но, если игнорировать ее при вычислении реальных вероятностей, правильных ответов не получим. Относится эта деталь к тому, что написано в конце предыдущего абзаца.
Если начать с одиночного циферблата, стрелка должна иметь длину 1, потому что частица должна находиться в месте расположения циферблата со 100 %‑ной вероятностью. Наше квантовое правило гласит: чтобы описать положение частицы в какой‑то момент будущего, мы должны переместить циферблат во все точки Вселенной, соответственно тому, как частица может прыгнуть из своего текущего местоположения. Естественно, мы не в силах сделать так, чтобы все стрелки циферблатов имели длину 1, потому что тогда вся интерпретация вероятности рушится. Представьте, например, что частица описывается четырьмя циферблатами, так как находится в четырех разных местах. Если стрелка каждого циферблата имеет длину 1, то вероятность того, что частица находится в любой из четырех позиций, будет равняться 400 % – очевидно, что это нонсенс. Чтобы решить эту проблему, мы должны уменьшать циферблаты, а не только двигать их против часовой стрелки. Это «правило уменьшения» гласит, что после того, как все новые циферблаты будут порождены, каждый из них должен быть разделен на квадратный корень из общего количества часов[11]. Для четырех часов это значит, что каждую стрелку нужно разделить на √4, то есть стрелка каждого циферблата будет иметь длину ½. Отсюда следует: вероятность того, что частица будет найдена на месте любого из четырех циферблатов, равна (½)2 = 25 %. Таким простым способом мы можем убедиться, что вероятность нахождения частицы где‑либо всегда будет 100 %‑ной.
Конечно, количество возможных положений может быть бесконечным, так что циферблаты могут оказаться и нулевого размера. Это вызывает тревогу, но математика справится. Для наших целей мы всегда будем считать, что число циферблатов конечно и нам никогда не будет нужно знать, насколько уменьшается каждый циферблат.
Вернемся к предположению, что Вселенная содержит единственную частицу, положение которой точно не известно. Следующий раздел можете воспринимать как небольшую математическую задачу – следить за ходом мысли сначала окажется сложно (тогда попробуйте перечитать), но если вы сможете понять, что происходит, то поймете и то, как возникает принцип неопределенности. Для простоты допустим, что частица движется в одномерном пространстве, то есть находится где‑то на прямой линии. Более реалистичный пример для трех измерений не отличается фундаментально, зато его сложнее изобразить. На рис. 4.3 мы сделали зарисовку ситуации одномерного движения, изобразив частицу линией из трех циферблатов. Однако нужно представить, что их намного больше – по одному в каждой точке, где может находиться частица. Просто нарисовать такое количество было бы очень трудно. В этой группе циферблатов, соответствующей исходному положению частицы, циферблат 3 находится слева, а циферблат 1 – справа. Итак, в этой ситуации мы знаем, что частица в начальный момент находится где‑то между циферблатами 1 и 3. Ньютон сказал бы, что она останется между циферблатами 1 и 3, если с ней ничего не делать, но как насчет квантового правила? Здесь‑то и начинается самое интересное: мы поиграем с правилами циферблатов, чтобы ответить на этот вопрос.
Рис. 4.3. Три циферблата, показывающие одинаковое время и расположенные на одной линии, описывают частицу, в начальный момент находящуюся где‑то в области этих циферблатов. Нас интересует, каковы шансы на то, чтобы найти частицу в точке X в некоторый последующий момент времени
Позволим времени идти вперед и выясним, что произойдет с этим рядом циферблатов. Представим себе сначала одну конкретную точку на большом расстоянии от исходной группы циферблатов. На рисунке она отмечена буквой X . О точных параметрах «большого расстояния» поговорим чуть позже, а сейчас это просто значит, что стрелки должны существенно изменить свое положение.
Применив правила игры, мы должны перенести каждый циферблат из исходной группы в точку Х , передвигая стрелки и уменьшая их соответствующим образом. Физически это соответствует тому, что частица прыгает из точки поля в точку Х . В точку Х прибудет несколько циферблатов – по одному из каждой исходной точки, и следует сложить их все. В итоге квадрат длины результирующей стрелки циферблата в точке Х даст нам вероятность нахождения частицы в Х .
Теперь понаблюдаем за процессом в развитии и добавим ряд цифр. Допустим, что точка Х находится на расстоянии 10 единиц от циферблата 1, а ширина области, занимаемой исходной группой циферблатов, – 0,2 единицы. При ответе на очевидный вопрос «Что это за расстояние – 10 единиц?» в наше повествование входит постоянная Планка, но сейчас мы ловко отпихиваем ее в сторону и просто отмечаем, что 1 единица расстояния соответствует 1 полному (12‑часовому) обороту стрелки на циферблате. Это значит, что точка Х примерно в 10² = 100 полных оборотах от изначального поля (помните о правиле хода часов). Положим также, что циферблаты в исходной группе были одного размера и все указывали на 12 часов. Предположение об их одинаковом размере – это предположение о том, что частицу можно с одинаковыми шансами найти в точках, соответствующих циферблатам 1, 2 и 3 на нашем рисунке, а значение того, что все циферблаты показывают одинаковое время, выявится позднее.
Чтобы переместить циферблат из точки 1 в точку Х , нужно в соответствии с правилом сделать полный оборот стрелки против хода часов 100 раз. Сейчас перенесемся в точку 3, которая находится в 0,2 единицы от точки 1, и переместим в Х и этот циферблат. Так как этот циферблат должен пройти 10,2 единицы, открутить его стрелку назад нужно чуть дальше – 10,2² раза, что очень близко к 104.
Теперь у нас два циферблата в точке Х , соответствующие частице, прибывшей туда из точки 1, и частице, прибывшей из точки 3. Их нужно сложить, чтобы начать вычислять итоговый циферблат. Поскольку обе стрелки были откручены назад примерно одинаковое количество раз, то они оба показывают приблизительно 12 часов. При сложении они дают часы с более длинной стрелкой, тоже указывающей на 12. Заметьте, роль играет только конечное положение часовой стрелки. Нет смысла фиксировать число ее оборотов. Пока все хорошо, но мы еще не закончили, потому что между правым и левым краями исходной группы еще есть множество маленьких циферблатов.
И мы переводим внимание на циферблат, лежащий посредине исходной группы, то есть в точке 2. Этот циферблат находится в 10,1 единицы от Х , то есть нужно совершить 10,12 оборота стрелки. Это очень близко к 102 полным оборотам, то есть снова получается целое число. Нужно прибавить этот циферблат к остальным из точки Х , и, как и в предыдущий раз, стрелка станет длиннее. Продолжим: есть точка между точками 1 и 2, и при перемещении циферблата в точку Х нужно будет сделать 101 полный оборот, что снова удлинит стрелку получающегося циферблата. И тут наступает важный момент. Если обратиться к циферблату между этими двумя, то его нужно будет подкрутить 100,5 раза до достижения точки Х . Таким образом получится циферблат, стрелка которого укажет на 6 часов, и при сложении мы уменьшим длину стрелки в Х . Немного подумав, вы убедитесь, что, хотя точки, отмеченные как 1, 2 и 3, дают в Х циферблаты, указывающие на 12, как и точки, лежащие между 1–2 и 2–3, но точки, лежащие на ¼ и ¾ пути между 1–3 и 2–3, дают циферблаты, указывающие на 6. Всего получается 5 циферблатов со стрелкой вверх и 4 циферблата со стрелкой вниз. При сложении всех этих циферблатов мы получим в точке Х такой циферблат, стрелка которого будет микроскопической, потому что почти все циферблаты будут отменять друг друга.
Такое «аннулирование циферблатов», разумеется, относится и к более реалистическому случаю, когда мы принимаем во внимание абсолютно все точки, лежащие в области между точками 1 и 3. К примеру, точка, лежащая на ⅛ пути от точки 1, дает циферблат со стрелкой на 9 часов, в то время как точка, лежащая на ⅜ пути, указывает на 3 часа – и снова они отменяют друг друга. В суммарном итоге оказывается, что циферблаты, соответствующие всем возможным для частицы маршрутам из любой точки поля в точку Х , отменяют друг друга. Аннулирование показано в правом углу рисунка. Стрелки соответствуют часовым стрелкам, прибывающим в Х из различных точек исходной области.
В результате сложения всех этих стрелок они отменяют друг друга. Это основной момент, который нужно усвоить.
Итак, повторим: мы сейчас показали, что, если исходная группа циферблатов достаточно велика и точка Х достаточно далека, то для каждого циферблата, прибывающего в Х со стрелкой на 12 часов, найдется другой циферблат со стрелкой на 6 часов, отменяющий предыдущий. Для каждого циферблата со стрелкой на 3 часа найдется другой со стрелкой на 9 часов, отменяющий первый, и т. д. Эта массовая отмена подразумевает, что на самом деле нет практически никаких шансов найти частицу в точке Х . Звучит это очень интересно и вдохновляюще, так как кажется, что описание соответствует неподвижной частице. Начав со смехотворного на вид предположения о том, что частица может перемещаться из любой точки пространства в любое другое место Вселенной за очень короткий срок, мы обнаруживаем, однако, что это не так, если начать с группы циферблатов. В ситуации, когда все циферблаты интерферируют друг с другом, частица практически не имеет возможности сдвинуться далеко от исходного положения.
Этот вывод, по словам профессора Оксфордского университета Джеймса Блайни, стал результатом «неконтролируемой квантовой интерференции». Для этого явления и соответствующей ему взаимной отмены циферблатов точка Х должна быть достаточно далека от исходной области, – настолько, чтобы циферблаты могли совершить достаточное количество оборотов. Почему? Потому что если точка Х расположена слишком близко, то стрелки часов, возможно, не успеют сделать даже один оборот, а следовательно, не будут отменять друг друга столь эффективно. Представим, например, что расстояние между циферблатом в точке 1 и точкой Х не 10 единиц, а 0,3 единицы. Теперь стрелка циферблата на передней стороне области повернется меньше, чем в предыдущем случае, совершая всего 0,3² = 0,09 оборота, и укажет на начало второго. Аналогично стрелка циферблата из точки 3 на задней стороне области совершит 0,5² = 0,25 оборота и укажет на 3 часа. Соответственно, все циферблаты в Х укажут на что‑то между часом и тремя, то есть больше не отменяют друг друга, а складываются в один большой циферблат, указывающий приблизительно на 2 часа. Все это говорит о том, что существует довольно весомый шанс нахождения частицы в местах, расположенных вблизи от исходной области, но все же вне ее. Под «вблизи» мы понимаем расстояние, недостаточное для того, чтобы получить по меньшей мере один оборот стрелки часов. Все это уже намекает на принцип неопределенности, но по‑прежнему выглядит довольно туманно, поэтому давайте разберемся, что именно мы понимаем под «достаточно большой» исходной областью и «достаточно удаленной» от него точкой.
Вслед за Дираком и Фейнманом мы сделали предположение, что, если частица массой m проходит расстояние x за время t , величина поворота стрелок будет пропорциональна действию, то есть mx ² / t . Однако слова «пропорциональна» недостаточно, если нужно рассчитать реальные величины. Нужно точно знать, чему равен поворот стрелок. В главе 2 мы говорили о законе всемирного тяготения Ньютона и для точных количественных прогнозов ввели понятие гравитационной постоянной Ньютона, которая определяет величину силы гравитации.
С помощью добавления в уравнение постоянной Ньютона можно подставлять числа в уравнение и вычислять характеристики реальных физических явлений, например период обращения Луны по орбите или маршрут движения космического корабля «Вояджер‑2» по Солнечной системе. Но нам нужно что‑то подобное и для квантовой механики – такая природная константа, которая «задает масштаб» и позволяет нам взять величину действия и выдать точное предсказание того, сколько оборотов должны сделать часовые стрелки при перемещении частицы на конкретное расстояние из исходного положения за заданное время. Эта константа называется постоянной Планка.
Краткая история постоянной Планка
Вечером 7 октября 1900 года в полете вдохновения Максу Планку удалось понять, каким образом нагретые тела излучают энергию. Всю вторую половину XIX века точные отношения между распространением световых волн, испускаемых нагретыми телами, и их температурой были одной из главных загадок физики. Каждое нагретое тело испускает свет, причем с увеличением температуры природа этого света изменяется. Мы знакомы с видимым диапазоном света, соответствующим цветам радуги, но свет может иметь и такую длину волны, которая окажется слишком короткой или слишком длинной по сравнению с видимым человеческим глазом спектром. Свет с большей длиной волны называется «инфракрасным», его можно наблюдать с помощью приборов ночного видения. Еще более длинные – радиоволны. Более короткие, чем видимый спектр, световые волны называются ультрафиолетовыми, а волны самой короткой длины относятся к гамма‑излучению. Неосвещенный кусок угля при комнатной температуре испускает инфракрасное излучение. Но если бросить его в костер, он начнет светиться красным цветом. Дело в том, что при повышении температуры угля средняя длина волны излучения уменьшается, постепенно доходя до значения, воспринимаемого человеческим глазом. Чем сильнее нагрето тело, тем короче длина волны, которую оно излучает. В XIX веке, когда точность экспериментальных измерений существенно выросла, стало ясно, что верной математической формулы для описания этого наблюдения не существует. Эту ситуацию часто называют «проблемой излучения черного тела», потому что физики называют идеализированные объекты, которые полностью поглощают излучение и затем переизлучают его (осуществляют реэмиссию), «черными телами». Эта проблема была очень серьезной, потому что показывала неспособность физиков понять характер света, излучаемого всеми на свете объектами.
Планк обдумывал этот и сопредельные вопросы термодинамики и электромагнетизма много лет, прежде чем был назначен профессором теоретической физики в Берлине. Изначально пост предлагался Больцману и Герцу, но оба отклонили предложение. Это оказалось неожиданной удачей, потому что Берлин был центром экспериментальных исследований излучения черного тела, а погружение Планка в сердце экспериментальной работы оказалось ключевым для его последующих теоретических свершений. Физики часто работают лучше, когда имеют возможность вести незапланированные беседы с коллегами по самому широкому спектру вопросов.
Мы знаем дату и время откровения, явившегося Планку, потому что он с семьей проводил воскресный день 7 октября 1900 года вместе с коллегой Генрихом Рубенсом. За обедом они обсуждали непригодность современных им теоретических моделей для детального объяснения излучения черного тела. К вечеру Планк нацарапал формулу на почтовой открытке и отправил Рубенсу. Формула оказалась верной, но выглядела и впрямь очень странно. Планк позднее охарактеризовал свои действия как жест отчаяния: он перепробовал все, что пришло в голову. Честно говоря, совершенно непонятно, как он пришел к своей формуле. В великолепной биографии «Научная деятельность и жизнь Альберта Эйнштейна», составленной Абрахамом Пайсом, написано: «Его аргументация была безумной, но безумие это было того божественного сорта, который привносят в науку только величайшие ее представители». Предложение Планка было одновременно революционным и необъяснимым. Он понял, что может истолковать излучение черного тела, только если предположить, что энергия испускаемого излучения состоит из большого количества более мелких «пакетов» энергии. Иными словами, общая энергия квантуется в единицах новой фундаментальной константы природы, которую Планк назвал квантом действия . Сегодня мы называем ее постоянной Планка.
Формула Планка предполагает (хотя он не имел об этом представления), что свет всегда излучается и поглощается пакетами, или квантами. В современной записи эти пакеты обладают энергией E = hc / λ , где λ – длина световой волны (произносится «лямбда»), c – скорость света, а h – постоянная Планка.
Роль постоянной Планка в этом уравнении – быть коэффициентом преобразования длины световой волны в энергию соответствующего кванта. Предположение, что определенное Планком квантование энергии испускаемого света возникает, потому что сам свет тоже состоит из частиц, было очень осторожно выдвинуто Альбертом Эйнштейном. Он сделал это предположение в 1905 году, в чудесный год вспышки своего творческого гения, когда он сформулировал также специальную теорию относительности и самое знаменитое уравнение в истории науки: E = mc ². Правда, Нобелевскую премию 1921 года по физике (которая из‑за каких‑то хитрых бюрократических уловок была вручена только в 1922‑м) Эйнштейн получил за работу над фотоэффектом, а не за более известные теории относительности. Ученый предположил, что свет можно рассматривать как поток частиц (в то время он не использовал термин «фотоны»), и верно осознал, что энергия каждого фотона обратно пропорциональна длине волны. Эта идея Эйнштейна стала источником одного из самых знаменитых парадоксов квантовой теории, в которой частицы ведут себя как волны, и наоборот.
Планк разрушил первые камни в основании Максвеллова представления о свете, показав, что энергия света, излучаемого нагретым телом, может быть описана, только если она испускается квантами. Окончательно разметал весь фундамент классической физики Эйнштейн. Его интерпретация фотоэлектрического эффекта заключалась не только в том, что свет испускается малыми порциями, но и в том, что он взаимодействует с материей в форме локализованных пакетов. Иными словами, свет действительно ведет себя как поток частиц.
Идея о том, что свет состоит из частиц (можно сказать, что «электромагнитное поле квантовано») звучала глубоко противоречиво, и правота Эйнштейна была признана лишь через несколько десятилетий. Так же неохотно, как они соглашались с идеей фотона, одним из соавторов которой стал сам Планк, в 1913 году коллеги Эйнштейна представляли его к членству в престижной Прусской академии (это было спустя целых восемь лет после введения понятия фотона):
«В целом можно сказать, что, кажется, нет ни одной крупной проблемы, на которые так богата современная физика, где Эйнштейн не отметился бы значительным вкладом. То, что порой его рассуждения могут оказываться несколько бесцельными, как, например, гипотеза световых квантов, нельзя рассматривать в качестве аргумента против него, потому что невозможно предлагать действительно новые идеи даже в самых точных науках, полностью исключая любой риск».
Иными словами, на самом деле в реальность фотонов никто не верил. Широко распространено было мнение о том, что предположение Планка относилось больше к свойствам материи – мельчайшим осцилляторам, испускающим свет, – чем к собственно свету. Было попросту слишком странно считать, что замечательные волновые уравнения Максвелла подлежат замене теорией частиц.
Мы рассказываем эту историю во многом для того, чтобы подтвердить: осознать квантовую теорию сложно всем и всегда. Визуализировать такие объекты, как электрон или фотон, нереально: они ведут себя то как частица, то как волна, а иногда как ни то ни другое. Эйнштейна этот вопрос беспокоил до конца жизни. В 1951 году, за четыре года до смерти, он писал: «Все 50 лет труда не приблизили меня к ответу на вопрос: что же такое световые кванты?»
Сейчас, спустя еще 60 лет, не возникает сомнения, что теория, которую мы продолжаем разрабатывать с помощью множества мельчайших циферблатов, безошибочно описывает результаты каждого эксперимента, поставленного для ее проверки.