Вселенная на булавочной головке (и почему мы не проваливаемся сквозь землю) 4 страница

Но тут, как будто было недостаточно всего остального, появляется дополнительное важное осложнение: мы должны обратиться к той области физики, которая была введена в «неожиданном повороте» в конце предыдущей главы.

Как вы помните, электроны, движущиеся в верхней части заполненной энергетической полосы, получают ускорение от электрического поля в обратную сторону относительно электронов, движущихся в нижней части той же полосы. Это значит, что дырки, которые находятся вверху валентной зоны, двигаются в противоположном направлении по отношению к электронам, находящимся в нижней части зоны проводимости.

Результат таков: мы можем изобразить поток электронов в одном направлении и соответствующий ему поток дырок в другом. Можно считать, что дырка имеет электрический заряд, прямо противоположный заряду электрона. Вспомните, что материал, через который текут наши электроны и дырки, в среднем электрически нейтральный. В любой отдельно взятой области материал не имеет заряда, потому что отрицательный заряд электронов отменяет положительный заряд, переносимый атомными ядрами. Но если мы создадим пару электрон‑дырка, переместив электрон из валентной зоны в зону проводимости (так, как мы уже описали), образуется свободно движущийся электрон, который создает избыток отрицательного заряда по сравнению с обычными условиями в этой области материала. Точно так же дырка – это отсутствие электрона, и в месте, где она есть, преобладает положительный заряд. Электрический ток по определению оказывается величиной, с которой движутся положительные заряды, так что электроны вносят в ток отрицательный вклад[42], а дырки – положительный, если движутся в одном и том же направлении. Если, как в случае с нашим полупроводником, электроны и дырки движутся в противоположных направлениях, то они складываются, в итоге получается больший заряд и, следовательно, большая сила тока.

Хотя все это кажется довольно запутанным, результаты ясны как день: мы должны представить, что течение электричества через полупроводник – это течение заряда, а он состоит из электронов в зоне проводимости, движущихся в одном направлении, и дырок в валентной зоне, движущихся в обратную сторону. Эта ситуация отличается от движения тока в проводнике, когда сила тока определяется движением огромного количества электронов в зоне проводимости, а дополнительная сила тока, создаваемая при образовании пар электрон‑дырка, пренебрежимо мала. Понять пользу полупроводников – значит осознать, что ток, идущий по полупроводнику, нельзя назвать неконтролируемым движением электронов по проводу, как в проводнике. Это гораздо более сложная комбинация движений электронов и дырок, которая при должной настройке может быть использована для создания микроскопических устройств, способных обеспечить полный контроль за движением тока по цепи.

Следующее изложение – вдохновляющий пример прикладной физики и техники. Идея в том, чтобы сознательно загрязнить кусок чистого кремния или германия для создания некоторых новых доступных энергетических уровней электронов. Эти новые уровни позволят контролировать поток электронов и дырок, идущий через полупроводник, как мы можем с помощью клапанов контролировать движение воды по трубам. Конечно, контролировать ток, идущий по проводу, в принципе легко: достаточно дернуть рубильник. Но мы сейчас не об этом, а о том, как создать более тонкие переключатели и динамически контролировать с их помощью ток в цепи. Эти переключатели – строительные кирпичики логических схем, а из логических схем, в свою очередь, состоят микропроцессоры. Итак, как же все это работает?

Левая часть рис. 9.2 показывает, что происходит, если кусок кремния загрязнен фосфором. Уровень загрязнения можно точно контролировать, что очень важно. Представьте, что в кристалле чистого кремния каждый атом последовательно замещается атомом фосфора. Атом фосфора попадает на место, освобожденное атомом кремния, и единственная разница состоит в том, что у фосфора на один электрон больше, чем у кремния. Этот лишний электрон очень слабо, но связан со своим атомом, он не до конца свободен и занимает энергетический уровень, находящийся сразу под зоной проводимости. При низких температурах зона проводимости пуста, и лишние электроны, появляющиеся из атомов фосфора, располагаются на донорном энергетическом уровне, отмеченном на рисунке.

Вселенная на булавочной головке (и почему мы не проваливаемся сквозь землю) 4 страница - student2.ru

Рис. 9.2. Новые энергетические уровни, появившиеся в полупроводнике n ‑типа (слева) и полупроводнике p ‑типа (справа)

При комнатной температуре пара электрон‑дырка в кремнии создается очень редко. Лишь один из примерно триллиона электронов получает достаточно энергии от термических колебаний решетки, чтобы перескочить из валентной зоны в зону проводимости. Напротив, поскольку донорный электрон в фосфоре очень слабо связан с атомом, велика вероятность, что он сможет совершить небольшой скачок с донорного уровня в зону проводимости. Итак, при комнатной температуре при уровне загрязнения выше чем один атом фосфора на триллион атомов кремния, в зоне проводимости будут преимущественно присутствовать электроны, освобожденные атомами фосфора. Это значит, что можно с очень высокой точностью контролировать присутствие мобильных электронов, которые способны проводить электричество, просто варьируя степень фосфорного загрязнения. Поскольку ток в этом случае переносят электроны, свободно движущиеся в полосе проводимости, мы говорим, что такой тип загрязненного кремния называется n ‑типом (от слова negative – отрицательный).

Правая часть рис. 9.2 показывает, что происходит, если вместо фосфора мы загрязняем кремний атомами алюминия. Атомы алюминия вновь располагаются среди атомов кремния и прекрасно замещают их. Разница в том, что у алюминия на один электрон меньше, чем у кремния. Так в чистом кристалле появляются дырки, в то время как при фосфорном загрязнении появлялись лишние электроны. Эти дырки расположены вблизи от атомов алюминия, и их можно заполнить электронами, которые перескакивают из валентной зоны соседних атомов кремния. «Дырчатый» акцепторный уровень показан на рисунке. Он располагается прямо над валентной зоной, потому что электрон из атома кремния в валентной зоне может легко перескочить в дырку, оставленную атомом алюминия. В этом случае естественно считать, что электрический ток переносится дырками, поэтому такой тип загрязненного кремния называется р ‑типом (от слова positive – положительный). Как и в предыдущем случае, при комнатной температуре уровень алюминиевого загрязнения может быть не более одной триллионной, прежде чем благодаря движению дырок из алюминия пойдет ток.

Итак, мы пока просто доказали, что можно сделать такой кусок кремния, который будет проводить ток – дав возможность либо электронам из атомов фосфора двигаться в зоне проводимости, либо дыркам из атомов алюминия двигаться в валентной зоне. Ну и что?

На рис. 9.3 показано, что мы на пути к чему‑то важному: он демонстрирует, что происходит, если сложить вместе два куска кремния – один n ‑типа и один р ‑типа. Изначально в области n ‑типа движутся электроны из фосфора, а в области р ‑типа – электроны из алюминия.

Вселенная на булавочной головке (и почему мы не проваливаемся сквозь землю) 4 страница - student2.ru

Рис. 9.3. Соединение двух кусков кремния – n ‑типа и р ‑типа

В итоге электроны из области n ‑типа перетекают в область р ‑типа, а электроны из области р ‑типа – в область n ‑типа. В этом нет никакой загадки; электроны и дырки змеятся по сочленению двух материалов, как капля чернил растворяется в ванне с водой. Но поскольку электроны и дырки движутся в противоположных направлениях, они оставляют за собой области положительного заряда (в области n ‑типа) и области отрицательного заряда (в области р ‑типа). Такое расположение зарядов препятствует дальнейшей миграции по правилу «одноименные заряды отталкиваются», со временем наступает баланс и миграция заканчивается.

На второй иллюстрации рис. 9.3 показано, как можно описать это явление на языке потенциалов. Демонстрируется, как электрический потенциал изменяется по всему сочленению. В глубине области n ‑типа эффект сочленения мал, и поскольку наступило состояние равновесия, ток отсутствует. Значит, в этой области потенциал постоянен. Прежде чем двигаться дальше, надо еще раз разъяснить, почему нам важен потенциал: он просто показывает, какие силы действуют на электроны и дырки. Если потенциал ровный, электрон не будет двигаться, как не двигается мяч, лежащий на ровном полу.

Если потенциал уходит вниз, можно предположить, что электрон, находящийся вблизи этого падающего потенциала, будет тоже «катиться вниз». К сожалению, принято довольно неудобное решение считать, что снижение потенциала означает «повышение» электрона, то есть электроны потекут вверх. Иными словами, падающий потенциал служит для электрона барьером, что мы и изобразили на рисунке. Это сила, подталкивающая электрон прочь от области р ‑типа, как следствие создания отрицательного заряда благодаря произошедшей ранее миграции электронов. Эта сила предотвращает дальнейшее движение электронов из кремния n ‑типа в кремний р ‑типа. Использование снижения потенциала для иллюстрации восхождения электрона на самом деле не так глупо, как кажется, потому что сейчас большая наглядность достигается для дырок, так как они естественным образом текут вниз. Можно считать, что наш способ представления потенциала (движущегося с высокой точки слева до низкой точки справа) корректно описывает и тот факт, что падение потенциала не позволяет дыркам покинуть область р ‑типа.

Третья иллюстрация на рисунке – аналогия с текущей водой. Электроны слева готовы и намерены потечь вниз по проводу, но барьер мешает им сделать это. Точно так же дырки в области р ‑типа скапливаются не с той стороны барьера; водяной барьер и падение потенциала – два разных способа представления одного и того же. Так обстоят дела, если просто скрепить вместе два куска кремния – n ‑типа и р ‑типа. Однако их скрепление требует несколько больших усилий, чем можно предположить: их нельзя просто склеить, потому что такое сочленение не позволит электронам и дыркам свободно перетекать из одной области в другую.

Самое интересное, если подключить этот pn ‑переход к батарее, это позволит повышать или понижать потенциальный барьер между областями n ‑типа и р‑ типа. Если понизить потенциал области р ‑типа, то он упадет еще сильнее, так что электронам и дыркам станет еще сложнее двигаться по сочленению. Но повышение потенциала области р ‑типа (или ослабление потенциала области n ‑типа) подобно понижению плотины, сдерживающей воду. Электроны области n ‑типа немедленно начинают затоплять область р ‑типа, а дырки движутся столь же массово, но в противоположном направлении. Таким образом pn ‑переход может использоваться как диод: он может обеспечить движение тока, правда, только в одном направлении[43]. Но диоды не главный предмет нашего интереса.

Рис. 9.4 – это набросок устройства, изменившего мир, – транзистора. Он показывает, что произойдет, если сделать своеобразный сэндвич – слой кремния p ‑типа разместить между двумя слоями кремния n ‑типа. Здесь нам хорошую службу сослужит объяснение про диод, потому что идеи примерно те же самые. Электроны движутся из областей n ‑типа в области р ‑типа, а дырки движутся в обратном направлении, пока из‑за падений потенциала в сочленениях между слоями такое взаимопроникновение не прекращается. В изолированном виде можно представить себе существование двух резервуаров электронов, разделенных барьером, и один резервуар дырок, зажатый между ними.

Вселенная на булавочной головке (и почему мы не проваливаемся сквозь землю) 4 страница - student2.ru

Рис. 9.4. Транзистор

Самое интересное происходит, когда мы прикладываем напряжение к области n ‑типа с одной стороны и к области р ‑типа в середине. Приложение положительного напряжения заставляет подняться плоскую часть кривой слева (на величину Vc ) и плоский участок в области р ‑типа (на величину Vb ). Это показано сплошной линией на центральной диаграмме. Такой способ расположения потенциалов имеет серьезные последствия: создается настоящий водопад электронов, которые преодолевают сниженный центральный барьер и направляются в область n ‑типа слева (напомним, что электроны текут «в горку»). Если Vc больше, чем Vb , то поток электронов будет односторонним и электроны слева не смогут преодолеть область р ‑типа. Как бы безобидно ни звучали эти фразы, но мы только что описали электронный клапан. Итак, посредством применения напряжения к области р ‑типа мы можем включать и выключать электрический ток.

И вот завершение: мы готовы к полному осознанию потенциала скромного транзистора. На рис. 9.5 снова демонстрируем действие транзистора через параллели с текущей водой. Ситуация «закрытого клапана» полностью аналогична тому, что происходит в области р ‑типа без всякого напряжения. Применение напряжения соответствует открытию клапана. Под двумя трубками мы изобразили символ, который обычно используется для транзистора, и с известной долей воображения можно утверждать, что он даже похож на клапан.

Вселенная на булавочной головке (и почему мы не проваливаемся сквозь землю) 4 страница - student2.ru

Рис. 9.5. Аналогия транзистора с водяными трубками

Что можно сделать с клапанами и трубками? Мы можем создать компьютер, а если трубки и клапаны достаточно малы, то вполне серьезный компьютер.

Рис. 9.6 представляет собой концептуальную иллюстрацию того, как можно использовать трубку с двумя клапанами и создать нечто под названием «логический вентиль». У трубки слева оба клапана открыты, в результате снизу вытекает вода. У трубки в центре и трубки справа один клапан открыт и один клапан закрыт, так что, очевидно, вода снизу не выливается. Мы решили не изображать четвертый вариант – когда оба клапана закрыты. Если обозначить вытекание воды из днища трубок цифрой 1, отсутствие такого вытекания – цифрой 0, а также назначить для открытого клапана цифру 1, а для закрытого цифру 0, то можно изобразить действие четырех трубок (трех нарисованных и одной ненарисованной) уравнениями 1 и 1 = 1, 1 и 0 = 0, 0 и 1 = 0 и 0 и 0 = 0. Слово «и » – логический оператор, который используется здесь в техническом смысле: система из трубки и клапанов, которую мы только что описали, называется «вентиль и ». Этот вентиль разрешает два ввода (состояние двух клапанов) и возвращает единственное значение (течет вода или нет), при этом единственный способ получить на выходе 1 – это ввести оба раза 1. Надеемся, теперь понятно, как можно с помощью пары подсоединенных транзисторов сделать «вентиль и » – принципиальная схема дана на этом рисунке.

Вселенная на булавочной головке (и почему мы не проваливаемся сквозь землю) 4 страница - student2.ru

Рис. 9.6. «Вентиль и », созданный с помощью водяной трубы и двух клапанов (слева) и пары транзисторов (справа). Второй вариант гораздо лучше подходит для создания компьютеров

Мы видим, что ток начинает течь только в том случае, если оба транзистора включены (то есть если приложить положительное напряжение к областям р ‑типа, Vb1 и Vb2 ), а именно это и приводит к появлению «вентиля и ».

Другая логическая схема изображена на рис. 9.7. Здесь вода будет вытекать снизу, если открыт любой из клапанов, и не будет вытекать, если оба клапана закрыты. Это называется «вентилем или », и ее можно описать аналогично предыдущей: 1 или 1 = 1, 1 или 0 = 1, 0 или 1 = 1 и 0 или 0 = 0. Соответствующая схема транзистора тоже показана на рисунке. Ток пойдет во всех случаях, кроме того, когда оба транзистора выключены.

Вселенная на булавочной головке (и почему мы не проваливаемся сквозь землю) 4 страница - student2.ru

Рис. 9.7. «Вентиль или », созданный при помощи двух водяных труб и двух клапанов (слева) или пары транзисторов (справа)

Именно на таких логических схемах и основана сила цифровых электронных приборов. Эти скромные строительные кирпичики дают сочетания логических схем, которые можно использовать для создания сколь угодно сложных алгоритмов. Можно назначить список вводимых значений в некоторых логических цепях (набор нулей и единиц), прогнать эти значения через некую изощренную конфигурацию транзисторов и получить на выходе список других значений (другой набор нулей и единиц). Таким образом мы создаем цепи для совершения сложнейших математических расчетов или принятия решений, основанных на том, какие клавиши нажимаются на клавиатуре. Затем мы снабжаем этой информацией устройство, которое выводит соответствующие символы на экран, или запускаем сигнал тревоги, если кто‑то вламывается в дом, или посылаем поток текстовых символов по оптоволоконному кабелю (при этом они представлены в виде бинарного кода) на другой конец мира, или… да что угодно, потому что практически любой электронный прибор в нашем распоряжении под завязку набит транзисторами.

Потенциал их безграничен, и мы уже вовсю используем транзисторы для изменения мира. Не будет преувеличением сказать, что транзистор – самое важное изобретение за последние 100 лет: современный мир построен на полупроводниковых технологиях и сформирован ими. С практической точки зрения эти технологии спасли миллионы жизней: в особенности стоит указать на применение вычислительных устройств в больницах, преимущества быстрых, надежных и распространенных по всему миру коммуникационных систем, использование компьютеров в научных исследованиях и для контролирования сложных промышленных производств.

Уильям Шокли, Джон Бардин и Уолтер Браттейн в 1956 году получили Нобелевскую премию по физике «За исследование полупроводников и открытие транзисторного эффекта». Возможно, никогда Нобелевская премия не присуждалась за работу, которая бы в такой степени непосредственно затрагивала жизни огромного числа людей.

Взаимодействие

В первых главах мы рассказывали о законах, по которым движутся мельчайшие частицы. Они перескакивают с места на место, без стеснения исследуя пространство и метафорически перенося с собой свои микроскопические циферблаты. Добавив множество циферблатов, соответствующих разнообразным способам, которыми они могут прибыть в некую определенную точку в пространстве, мы получаем единый общий циферблат, размер которого свидетельствует о вероятности найти частицу «там». Из диких, анархических проявлений квантовых скачков появляются более известные нам свойства повседневных предметов. В каком‑то смысле каждый электрон, каждый протон и каждый нейтрон, присутствующие в вашем теле, постоянно исследуют всю Вселенную, и только когда вычислена общая сумма всех этих исследований, мы оказываемся в мире, где атомы нашего тела, к счастью, стремятся находиться в относительно стабильной форме – по крайней мере, на век или больше. Но мы до сих пор никоим образом не касались природы взаимодействий между частицами. Мы ухитрились довольно далеко продвинуться, не касаясь вопроса о том, на каком языке частицы разговаривают друг с другом. Во многом помогла идея потенциала. Но что такое потенциал? Если мир состоит исключительно из частиц, то, разумеется, мы можем совсем отказаться от смутного представления, что частицы двигаются «в потенциале», созданном другими частицами, и говорить уже о том, как именно движутся частицы и как взаимодействуют.

Современный подход к фундаментальной физике, известный как квантовая теория поля, действительно устраняет это понятие, добавляя к законам движения частиц новые законы, которые объясняют, как эти частицы взаимодействуют друг с другом. Эти законы оказываются более сложными, чем те, с которыми мы уже встречались, и одно из чудес современной науки в том, что, несмотря на всю сложность и запутанность мира природы, законов этих не так уж много. Альберт Эйнштейн писал: «Вечная тайна мира – в его понятности», а то, что «он понятен, это настоящее чудо».

Начнем с формулировки законов первой открытой квантовой теории поля – квантовой электродинамики , сокращенно QED. Истоки этой теории восходят к 1920‑м годам, когда Дираку с особенным успехом удалось поставить электромагнитную теорию Максвелла на квантовые рельсы. Мы уже много раз встречались в этой книге с квантами электромагнитного поля, а именно с фотонами, но в то время с новой теорией было связано много очевидных проблем, остававшихся неразрешимыми в 1920–1930‑е годы. Как именно, например, электрон испускает фотон при движении между энергетическими уровнями в атоме? И что происходит с фотоном, когда он поглощается электроном, что позволяет электрону перепрыгнуть на более высокий энергетический уровень? Очевидно, что фотоны могут создаваться и разрушаться во внутриатомных процессах, и то, как это происходит, не описывается той «старомодной» квантовой теорией, с которой мы до сих пор имели дело в этой книге.

В истории науки есть несколько легендарных собраний ученых – встреч, кажется, определенно изменивших ход науки. Возможно, это немного не так, поскольку обычно участники таких встреч уже много лет работали над своими проблемами, но состоявшаяся в июне 1947 года конференция в Шелтер‑Айленде, на оконечности Лонг‑Айленда в Нью‑Йорке, обладает вескими основаниями на то, чтобы считаться катализатором научных открытий. Уже только список участников стоит того, чтобы прочитать его вслух и с выражением, потому что он краток и тем не менее содержит имена величайших американских физиков XX века. Вот он в алфавитном порядке: Ханс Бете, Дэвид Бом, Грегори Брейт, Виктор Вайскопф, Карл Дарроу, Хендрик Крамерс, Уиллис Лэмб, Дункан Макиннес, Роберт Маршак, Джон фон Нейман, Арнольд Нордсик, Роберт Оппенгеймер, Абрахам Пайс, Лайнус Полинг, Исидор Раби, Бруно Росси, Роберт Сербер, Эдвард Теллер, Джон Уилер, Джордж Уленбек, Ричард Фейнман, Герман Фешбах, Джон ван Флек и Джулиан Швингер. Читатель уже встречал в книге некоторые из упомянутых имен, а любой студент физического факультета, вероятно, знает большинство из них. Американский писатель Дэйв Барри однажды сказал: «Если одним словом определить, почему человеческая раса не раскрыла и никогда не раскроет полностью свой потенциал, то это будет слово “собрания”». Это, безусловно, верно, но встреча в Шелтер‑Айленде была исключением. Собрание началось с презентации того, что с тех пор получило название лэмбовского сдвига . Уиллис Лэмб с помощью высокоточных микроволновых методов, разработанных в ходе Второй мировой войны, обнаружил, что спектр водорода на самом деле не до конца описывается старой квантовой теорией. Существовал мельчайший сдвиг наблюдаемых энергетических уровней, который нельзя было объяснить теорией, изложенной нами в первой части книги. Этот эффект был крохотным, но стал настоящим вызовом для собравшихся теоретиков.

Тут мы оставим Шелтер‑Айленд, волнующийся после речи Лэмба, и обратимся к теории, возникшей в следующие месяцы и годы. Тем самым мы раскроем происхождение лэмбовского сдвига, а сейчас, чтобы разжечь ваш аппетит, приведем довольно загадочное описание ответа: протон и электрон в атоме водорода не одни.

QED – теория, описывающая, как электрически заряженные частицы, например электроны, взаимодействуют друг с другом и с частицами света (фотонами). Она одна способна объяснить все природные явления, за исключением гравитации и ядерных феноменов. К ядерным феноменам мы обратимся позже и объясним, почему атомное ядро не распадается, хотя представляет собой множество положительно заряженных протонов и нейтронов без заряда, которые в одну секунду разлетелись бы, если бы внутри ядра не происходили какие‑то процессы. Практически все остальное – и уж точно все, что вы видите и ощущаете, – объясняется на глубинных уровнях QED. Материя, свет, электричество и магнетизм – все это QED.

Начнем с толкования системы, с которой мы неоднократно уже встречались в этой книге, а именно Вселенной с одним электроном. Кружки на рисунке со «скачками циферблатов» на рис. 3.6 показывают множество возможных местонахождений электрона в какой‑то момент времени. Чтобы вывести вероятность нахождения электрона в некоторой точке Х в более позднее время, как говорят наши квантовые правила, мы должны позволить электрону перескочить в точку Х из любой возможной исходной точки. Каждый скачок приносит в точку Х циферблат, мы суммируем их и получаем ответ.

Сейчас мы сделаем то, что может изначально показаться слишком сложным, но, конечно, имеет под собой серьезные основания. Придется задействовать несколько А, В и Т – иными словами, мы снова возвращаемся на поле твидовых жилетов и меловой пыли; не беспокойтесь, это ненадолго.

Когда частица из точки А в нулевое время направляется к точке В во время Т , мы можем подсчитать, как будет выглядеть циферблат в точке В , переведя стрелки в точке А назад на величину, определенную расстоянием между В и А и временным интервалом. Иными словами, можем записать, что циферблат в точке В задается C (A , 0) P (A, B, T ), где C (A , 0) представляет исходный циферблат в точке А и в нулевое время, а P (A, B, T ) – воплощение правила перевода и уменьшения циферблатов, связанного со скачком из А в В [44]. Мы будем называть P (A, B, T ) «пропагатором» (функцией распространения. – Прим. ред .) перемещения из точки А в точку В . Теперь, когда известно правило перемещения из точки А в точку В , мы готовы вычислить вероятность нахождения частицы в точке Х . На рис. 4.2 есть множество исходных точек, так что нам придется продвинуться в точку Х из всех этих стартовых точек и сложить все получившиеся циферблаты. В нашей кажущейся зубодробительной нотации получается циферблат C (X, T ) = C (X 1, 0) P (X 1, X, T ) + C (X 2, 0) P (X 2, X, T ) + C (X 3, 0) P (X 3, X, T ) +…, где X 1, X 2, X 3 и так далее отражают все позиции частицы в нулевое время (то есть позиции кружков на рис. 4.2). Уточним: запись C (X 3, 0) P (X 3, X, T ) просто значит «взять циферблат в точке Х 3 и переместить ее в точку Х за время Т ». Не стоит думать, что тут происходит нечто очень сложное. Все, что мы делаем, так это вкратце записываем то, что уже знаем: «взять циферблат в точке Х 3 в нулевое время и рассчитать, насколько перевести стрелки и уменьшить циферблат в соответствии с путем частицы из точки Х 3 в точку Х в некоторое более позднее время Т , а затем повторить процесс для всех остальных циферблатов в нулевое время и, наконец, сложить все циферблаты вместе по правилу сложения циферблатов». Уверены, вы согласитесь, что это слишком многословно, поэтому с сокращенной записью жить будет проще.

Мы имеем право считать, что пропагатор воплощает правило перевода и уменьшения циферблатов. Мы можем также считать пропагатор циферблатом. Чтобы оправдать это бессодержательное заявление, представьте, что мы с уверенностью знаем, что электрон находится в точке А во время Т = 0 и что эта ситуация описывается циферблатом размера 1, показывающем 12 часов. Мы можем изобразить перемещение с помощью второго циферблата, и его размер совпадает с величиной, на которую должен быть уменьшен исходный циферблат, а время, которое показывает второй циферблат, соответствует величине необходимого перевода часов. Если скачок электрона из точки А в точку В требует уменьшения исходного циферблата в 5 раз и перевода стрелок на 2 часа назад, то пропагатор P (A, B, T ) можно представить в виде циферблата, размер которого равняется 1/5 = 0,2, а стрелки которого указывают на 10 часов (то есть переведены на 2 часа назад с 12). Циферблат в точке В получается простым «умножением» исходного циферблата в точке А на циферблат‑пропагатор.

Отступление для тех, кто разбирается в комплексных величинах: как C (X 1, 0) и C (X 2, 0), так и P (X 1, X, T ), P (X 2, X, T ) могут быть представлены в виде комплексного числа, и они сочетаются в соответствии с математическими правилами умножения комплексных чисел.

Для тех, кто не разбирается в комплексных величинах: это неважно, потому что описание с помощью циферблатов столь же точно. Мы всего лишь представили слегка иной взгляд на правило перевода циферблатов: можно переводить стрелки и уменьшать циферблат с помощью другого циферблата.

Нам ничто не мешает выработать правило умножения циферблатов, которое будет работать: умножить размеры двух циферблатов (1 × 0,2 = 0,2) и совместить время на этих двух циферблатах таким образом, что стрелки первого циферблата будут переведены на время второго: 12 минус 10, то есть 2 часа. Кажется, что мы где‑то слегка переусердствовали, и это определенно не то, что нужно, когда мы имеем дело лишь с одной частицей. Но физики ленивы, так что они не стали бы впадать во все эти сложные рассуждения, если бы это не экономило время и усилия в долгосрочной перспективе. Введенная здесь запись оказывается очень полезным способом следить за всеми переводами и уменьшениями циферблатов, когда мы подойдем к более интересному случаю с несколькими частицами – например, при рассмотрении атома водорода.

Наши рекомендации