Тангенциальная составляющая ускорения 18 страница

Тангенциальная составляющая ускорения 18 страница - student2.ru

где Т — термодинамическая температура.

Качественный ход температурной зависимости сопротивления металла представлен на рис. 147 (кривая 1). Впоследствии было обнаружено, что сопротивление многих металлов (например, Al, Pb, Zn и др.) и их сплавов при очень низких температурах TK (0,14—20 К), называемыхкритическими, характерных для каждого вещества, скачко­образно уменьшается до нуля (кривая 2), т. е. металл становится абсолютным провод­ником. Впервые это явление, названное сверхпроводимостью, обнаружено в 1911 г. Г. Камерлинг-Оннесом для ртути. Явление сверхпроводимости объясняется на основе квантовой теории. Практическое использование сверхпроводящих материалов (в об­мотках сверхпроводящих магнитов, в системах памяти ЭВМ и др.) затруднено из-за их низких критических температур. В настоящее время обнаружены и активно исследуют­ся керамические материалы, обладающие сверхпроводимостью при температуре выше 100 К.

На зависимости электрического сопротивления металлов от температуры основано действиетермометров сопротивления, которые позволяют по градуированной взаимо­связи сопротивления от температуры измерять температуру с точностью до 0,003 К. Термометры сопротивления, в которых в качестве рабочего вещества используются полупроводники, изготовленные по специальной технологии, называютсятермисторами. Они позволяют измерять температуры с точностью до миллионных долей кельвин.

Тангенциальная составляющая ускорения 18 страница - student2.ru

§ 99. Работа и мощность тока. Закон Джоуля — Ленца

Рассмотрим однородный проводник, к концам которого приложено напряжение U. За "время dt через сечение проводника переносится заряд dq=Idt. Так как ток представляет собой перемещение заряда dq под действием электрического поля, то, по формуле (84.6), работа тока

Тангенциальная составляющая ускорения 18 страница - student2.ru (99.1)

Если сопротивление проводника R, то, используя законОма (98.1), получим

Тангенциальная составляющая ускорения 18 страница - student2.ru (99.2)

Из (99.1) и (99.2) следует, что мощность тока

Тангенциальная составляющая ускорения 18 страница - student2.ru (99.3)

Если сила тока выражается в амперах, напряжение — в вольтах, сопротивле­ние — в омах, то работа тока выражается в джоулях, а мощность — в ваттах. На практике применяются также внесистемные единицы работы тока: ватт-час (Вт×ч) и киловатт-час (кВт×ч). 1 Вт×ч — работа тока мощностью 1 Вт в течение 1 ч; 1 Вт×ч=3600 Bт×c=3,6×103 Дж; 1 кВт×ч=103 Вт×ч= 3,6×106 Дж.

Если ток проходит по неподвижному металлическому проводнику, то вся работа тока идет на его нагревание и, по закону сохранения энергии,

Тангенциальная составляющая ускорения 18 страница - student2.ru (99.4)

Таким образом, используя выражения (99.4), (99.1) и (99.2), получим

Тангенциальная составляющая ускорения 18 страница - student2.ru (99.5)

Выражение (99.5) представляет собойзакон Джоуля—Ленца, экспериментально уста­новленный независимо друг от друга Дж. Джоулем и Э. X. Ленцем.*

* Э. X. Ленц (1804—1865) — русский физик.

Выделим в проводнике элементарный цилиндрический объем dV=dSdl (ось цилин­дра совпадает с направлением тока), сопротивление которого Тангенциальная составляющая ускорения 18 страница - student2.ru По закону Джоуля — Ленца, за время dt в этом объеме выделится теплота

Тангенциальная составляющая ускорения 18 страница - student2.ru

Количество теплоты, выделяющееся за единицу времени в единице объема, называется удельной тепловой мощностью тока. Она равна

Тангенциальная составляющая ускорения 18 страница - student2.ru (99.6)

Используя дифференциальную форму законаОма (j=gЕ) и соотношение r=1/g, получим

Тангенциальная составляющая ускорения 18 страница - student2.ru (99.7)

Формулы (99.6) и (99.7) являются обобщенным выражениемзакона Джоуля—Ленца в дифференциальной форме, пригодным для любого проводника.

Тепловое действие тока находит широкое применение в технике, которое началось с открытия в 1873 г. русским инженером А. Н. Лодыгиным (1847—1923) лампы накаливания. На нагревании проводников электрическим током основано действие элект­рических муфельных печей, электрической дуги (открыта русским инженером В. В. Петровым (1761—1834)), контактной электросварки, бытовых электронагрева­тельных приборов и т. д.

§ 100. Закон Ома для неоднородного участка цепи

Мы рассматривали закон Ома (см. (98.1)) для однородного участка цепи, т. е. такого, в котором не девствует э.д.с. (не действуют сторонние силы). Теперь рассмотрим неоднородный участок цепи, где действующую э.д.с. на участке 1—2 обозначим через Тангенциальная составляющая ускорения 18 страница - student2.ruа приложенную на концах участка разность потенциалов — через j1 —j2.

Если ток проходит по неподвижным проводникам, образующим участок 1—2, то работа А12 всех сил (сторонних и электростатических), совершаемая над носителями тока, по закону сохранения и превращения энергии равна теплоте, выделяющейся на участке. Работа сил, совершаемая при перемещении заряда Q0 на участке 1—2, согласно (97.4),

Тангенциальная составляющая ускорения 18 страница - student2.ru (100.1)

Э.д.с. Тангенциальная составляющая ускорения 18 страница - student2.ruкак и сила тока I, — величина скалярная. Ее необходимо брать либо с положительным, либо с отрицательным знаком в зависимости от знака работы, совершаемой сторонними силами. Если э.д.с. способствует движению положительных зарядов в выбранном направлении (в направлении 1—2), то Тангенциальная составляющая ускорения 18 страница - student2.ru> 0. Если э.д.с. препятствует движению положительных зарядов в данном направлении, то Тангенциальная составляющая ускорения 18 страница - student2.ru< 0. За время t в проводнике выделяется теплота (см. (99.5))

Тангенциальная составляющая ускорения 18 страница - student2.ru (100.2)

Из формул (100.1) и (100.2) получим

Тангенциальная составляющая ускорения 18 страница - student2.ru (100.3)

откуда

Тангенциальная составляющая ускорения 18 страница - student2.ru (100.4)

Выражение (100.3) или (100.4) представляет собойзакон Ома для неоднородного участка цепи в интегральной форме, который являетсяобобщенным законом Ома.

Если на данном участке цепи источник тока отсутствует (Тангенциальная составляющая ускорения 18 страница - student2.ru=0), то из (100.4) приходим к закону Ома для однородного участка цепи (98.1):

Тангенциальная составляющая ускорения 18 страница - student2.ru

(при отсутствии сторонних сил напряжение на концах участка равно разности потенци­алов (см. § 97)). Если же электрическая цепь замкнута, то выбранные точки 1 и 2 со­впадают, j1=j2; тогда из (100.4) получаем закон Ома для замкнутой цепи:

Тангенциальная составляющая ускорения 18 страница - student2.ru

где Тангенциальная составляющая ускорения 18 страница - student2.ru- э.д.с., действующая в цепи, R — суммарное сопротивление всей цепи. В общем случае R=r+R1, где r — внутреннее сопротивление источника тока, R1—со­противление внешней цепи. Поэтому законОма для замкнутой цепи будет иметь вид

Тангенциальная составляющая ускорения 18 страница - student2.ru

Если цепь разомкнута и, следовательно, в ней ток отсутствует (I = 0), то из закона Ома (100.4) получим, что Тангенциальная составляющая ускорения 18 страница - student2.ru=j1—j2, т. е. э.д.с., действующая в разомкнутой цепи, равна разности потенциалов на ее концах. Следовательно, для того чтобы найти э.д.с. источника тока, надо измерить разность потенциалов на егоклеммах при разомкнутой цепи.

§ 101. Правила Кирхгофа для разветвленных цепей

Обобщенный закон Ома (см. (100.3)) позволяет рассчитать практически любую слож­ную цепь. Однако непосредственный расчет разветвленных цепей, содержащих несколь­ко замкнутых контуров (контуры могут иметь общие участки, каждый из контуров может иметь несколько источников тока и т. д.), довольно сложен. Эта задача решает­ся более просто с помощью двух правил Кирхгофа.*

*Г. Кирхгоф (1824—1887) — немецкий физик.

Любая точка разветвления цепи, в которой сходится не менее трех проводников с током, называется узлом. При этом ток, входящий в узел, считается положительным, а ток, выходящий из узла, — отрицательным.

Первое правило Кирхгофа: алгебраическая сумма токов, сходящихся в узле, равна нулю:

Тангенциальная составляющая ускорения 18 страница - student2.ru

Например, для рис. 148 первое правило Кирхгофа запишется так:

Тангенциальная составляющая ускорения 18 страница - student2.ru

Первое правило Кирхгофа вытекает из закона сохранения электрического заряда. Действительно, в случае установившегося постоянного тока ни в одной точке провод­ника и ни на одном его участке не должны накапливаться электрические заряды. В противном случае токи не могли бы оставаться постоянными.

Второе правило Кирхгофа получается из обобщенного закона Ома для разветвлен­ных цепей. Рассмотрим контур, состоящий из трех участков (рис. 149). Направление обхода по часовой стрелке примем за положительное, отметив, что выбор этого направления совершенно произволен. Все токи, совпадающие по направлению с напра­влением обхода контура, считаются положительными, не совпадающие с направлением обхода — отрицательными. Источники тока считаются положительными, если они создают ток, направленный в сторону обхода контура. Применяя к участкам закон Ома (100.3), можно записать:

Тангенциальная составляющая ускорения 18 страница - student2.ru

Тангенциальная составляющая ускорения 18 страница - student2.ru

Складывая почленно эти уравнения, получим

Тангенциальная составляющая ускорения 18 страница - student2.ru (101.1)

Уравнение (101.1) выражает второе правило Кирхгофа: в любом замкнутом контуре, произвольно выбранном в разветвленной электрической цепи, алгебраическая сумма произведений сил токов Ii на сопротивления Ri соответствующих участков этого контура равна алгебраической сумме э.д.с. , встречающихся в этом контуре:

Тангенциальная составляющая ускорения 18 страница - student2.ru (101.2)

При расчете сложных цепей постоянного тока с применением правил Кирхгофа необходимо:

1. Выбрать произвольное направление токов на всех участках цепи; действительное направление токов определяется при решении задачи: если искомый ток получится положительным, то его направление было выбрано правильно, отрицательным — его истинное направление противоположно выбранному.

2. Выбрать направление обхода контура и строго его придерживаться; произведе­ние IR положительно, если ток на данном участке совпадает с направлением обхода, и, наоборот, э.д.с., действующие по выбранному направлению обхода, считаются поло­жительными, против — отрицательными.

3. Составить столько уравнений, чтобы их число было равно числу искомых величин (в систему уравнений должны входить все сопротивления и э.д.с. рассматрива­емой цепи); каждый рассматриваемый контур должен содержать хотя бы один элемент, не содержащийся в предыдущих контурах, иначе получатся уравнения, являющиеся простой комбинацией уже составленных.

В качестве примера использования правил Кирхгофа рассмотрим схему (рис. 150) измеритель­ногомоста Уитстона.* Сопротивления R1, R2, R3и R4 образуют его «плечи». Между точками А и В моста включена батарея с э.д.с. Тангенциальная составляющая ускорения 18 страница - student2.ru и сопротивлением r, между точками С и D включен гальванометр с сопротивлением RG. Для узлов А, В и С, применяя первое правило Кирхгофа, получим

Тангенциальная составляющая ускорения 18 страница - student2.ru (101.3)

Для контуров АСВA, ACDA и CBDC, согласно второму правилу Кирхгофа, можно записать:

Тангенциальная составляющая ускорения 18 страница - student2.ru (101.4)

* Ч. Уитстон (1802—1875) — английский физик.

Тангенциальная составляющая ускорения 18 страница - student2.ru

Если известны все сопротивления и э.д.с., то, решая полученные шесть уравнений, можно найти неизвестные токи. Изменяя известные сопротивления R2, R3 и R4, можно добиться того, чтобы ток через гальванометр был равен нулю (IG = 0). Тогда из (101.3) найдем

Тангенциальная составляющая ускорения 18 страница - student2.ru (101.5)

а из (101.4) получим

Тангенциальная составляющая ускорения 18 страница - student2.ru (101.6)

Из (101.5) и (101.6) вытекает, что

Тангенциальная составляющая ускорения 18 страница - student2.ru (101.7)

Таким образом, в случае равновесного моста (IG = 0) при определении искомого сопротивления R1 э.д.с. батареи, сопротивления батареи и гальванометра роли не играют.

На практике обычно используетсяреохордный мост Уитстона (рис. 151), где сопротивле­ния R3и R4 представляют собой длинную однородную проволоку (реохорд) с большим удельным сопротивлением, так что отношение R3/R4 можно заменить отношением l3/l4. Тогда, используя выражение (101.7), можно записать

Тангенциальная составляющая ускорения 18 страница - student2.ru (101.8)

Длины l3 и l4 легко измеряются по шкале, a R2 всегда известно. Поэтому уравнение (101.8) позволяет определить неизвестное сопротивление R1.

Тангенциальная составляющая ускорения 18 страница - student2.ru

Задачи

12.1. По медному проводнику сечением 1 мм2 течет ток; сила тока 1 А. Определить среднюю скорость упорядоченного движения электронов вдоль проводника, предполагая, что на каждый атом меди приходится один свободный электрон. Плотность меди 8,9 г/см3. [74 мкм/с]

12.2. Определить, во сколько раз возрастет сила тока, проходящего через платиновую печь, если при постоянном напряжении на зажимах ее температура повышается от t1=20°C до t2=1200°С. Температурный коэффициент сопротивления платины принять равным 3,65×103 К–1. [В 5 раз]

12.3. По медному проводу сечением 0,3 мм2 течет ток 0,3 А. Определить силу, действую­щую на отдельные свободные электроны со стороны электрического поля. Удельное сопротивление меди 17 нОм×м. [2,72×10–21 Н]

12.4. Сила тока в проводнике сопротивлением 10 Ом равномерно убывает от I0=3 А до I=0 за 30 с. Определить выделившееся за это время в проводнике количество теплоты. [900 Дж].

12.5. Плотность электрического тока в алюминиевом проводе равна 5 А/см2. Определить удель­ную тепловую мощность тока, если удельное сопротивление алюминия 26 нОм×м. [66 Дж/(м3×с)]

12.6. Определить внутреннее сопротивление r источника тока, если во внешней цепи при силе тока I1=5 А выделяется мощность P1=10 Вт, а при силе тока I2=8 А — мощность P2=12 Вт. [0,17 Ом]

12.7. Три источника тока с э.д.с. E1=1,8 В, E2=1,4 В и E3=1,1 В соединены накоротко одно­именными полюсами. Внутреннее сопротивление первого источника r1=0,4 Ом, второ­го — r2=0,6 Ом. Определить внутреннее сопротивление третьего источника, если через первый источник идет ток I1=1,13 A. [0,2 Ом]

Глава 13 Электрические токи в металлах, вакууме и газах

§ 102. Элементарная классическая теория электропроводности металлов

Носителями тока в металлах являются свободные электроны, т. е. электроны, слабо связанные с ионами кристаллической решетки металла. Это представление о природе носителей тока в металлах основывается на электронной теории проводимости метал­лов, созданной немецким физиком П. Друде (1863—1906) и разработанной впоследст­вии нидерландским физиком X. Лоренцем, а также на ряде классических опытов, подтверждающих положения электронной теории.

Первый из таких опытов —опыт Рикке* (1901), в котором в течение года электрический ток пропускался через три последовательно соединенных с тщательно отшлифованными торцами металлических цилиндра (Сu, Аl, Сu) одинакового радиуса. Несмотря на то что общий заряд, прошедший через эти цилиндры, достигал огромного значения (»3,5×106 Кл), никаких, даже микроскопических, следов переноса вещества не обнаружилось. Это явилось экспериментальным доказательством того, что ионы в металлах не участвуют в переносе электричества, а перенос заряда в металлах осуществляется частицами, которые являются общими для всех металлов. Такими частицами могли быть открытые в 1897 г. английским физиком Д. Томсоном (1856—1940) электроны.

*К. Рикке (1845—1915) — немецкий физик.

Для доказательства этого предположения необходимо было определить знак и ве­личину удельного заряда носителей (отношение заряда носителя к его массе). Идея подобных опытов заключалась в следующем: если в металле имеются подвижные, слабо связанные с решеткой носители тока, то при резком торможении проводника эти частицы должны по инерции смещаться вперед,как смещаются вперед пассажиры, стоящие в вагоне при его торможении. Результатом смещения зарядов должен быть импульс тока; по направлению тока можно определить знак носителей тока, а зная размеры и сопротивление проводника, можно вычислить удельный заряд носителей. Идея этих опытов (1913) и их качественное воплощение принадлежат российским физикам С. Л. Мандельштаму (1879—1944) и Н. Д. Папалекси (1880—1947). Эти опы­ты в 1916 г. были усовершенствованы и проведены американским физиком Р. Толменом (1881—1948) и ранее шотландским физиком Б. Стюартом (1828—1887). Ими экспериментально доказано, что носители тока в металлах имеют отрицательный заряд, а их удельный заряд приблизительно одинаков для всех исследованных метал­лов. По значению удельного заряда носителей электрического тока и по определенному ранее Р. Милликеном элементарному электрическому заряду была определена их масса. Оказалось, что значения удельного заряда и массы носителей тока и электронов, движущихся в вакууме, совпадали. Таким образом, было окончательно доказано, что носителями электрического тока в металлах являются свободные электроны.

Существование свободных электронов в металлах можно объяснить следующим образом: при образовании кристаллической решетки металла (в результате сближения изолированных атомов) валентные электроны, сравнительно слабо связанные с атом­ными ядрами, отрываются от атомов металла, становятся «свободными» и могут перемещаться по всему объему. Таким образом, в узлах кристаллической решетки располагаются ионы металла, а между ними хаотически движутся свободные электро­ны, образуя своеобразный электронный газ, обладающий, согласно электронной те­ории металлов, свойствами идеального газа.

Электроны проводимости при своем движении сталкиваются с ионами решетки, в результате чего устанавливается термодинамическое равновесие между электронным газом и решеткой. По теории Друде—Лоренца, электроны обладают такой же энергией теплового движения,как и молекулы одноатомного газа. Поэтому, применяя выводы молекулярно-кинетической теории (см. (44.3)), можно найти среднюю скорость теплового движения электронов

Тангенциальная составляющая ускорения 18 страница - student2.ru

которая для T=300 К равна 1,1×105 м/с. Тепловое движение электронов, являясь хаотическим, не может привести к возникновению тока.

При наложении внешнего электрического поля на металлический проводник кроме теплового движения электронов возникает их упорядоченное движение, т. е. возникает электрический ток. Среднюю скорость ávñ упорядоченного движения электронов мож­но оценить согласно формуле (96.1) для плотности тока: j=пeávñ. Выбрав допустимую плотность тока, например для медных проводов 107 А/м2, получим, что при концент­рации носителей тока n = 8×1028м–3 средняя скорость ávñ упорядоченного движения электронов равна 7,8×10–4 м/с. Следовательно, ávñ<<áuñ, т. е. даже при очень боль­ших плотностях тока средняя скорость упорядоченного движения электронов, обуслов­ливающего электрический ток, значительно меньше их скорости теплового движения. Поэтому при вычислениях результирующую скорость ávñ + áuñ можно заменять скоростью теплового движения áuñ.

Казалось бы, полученный результат противоречит факту практически мгновенной передачи электрических сигналов на большие расстояния. Дело в том, что замыкание электрической цепи влечет за собой распространение электрического поля со скоро­стью с (c=3×108м/с). Через время t=l/c (l — длина цепи) вдоль цепи установится стационарное электрическое поле и в ней начнется упорядоченное движение электро­нов. Поэтому электрический ток возникает в цепи практически одновременно с ее замыканием.

§ 103. Вывод основных законов электрического тока в классической теории электропроводности металлов

1. Закон Ома. Пусть в металлическом проводнике существует электрическое поле напряженностью E=const. Co стороны поля заряд е испытывает действие силы F = eE и приобретает ускорение a=F/m=eE/m. Таким образом, во время свободного пробега электроны движутся равноускоренно, приобретая к концу свободного пробега скорость

Тангенциальная составляющая ускорения 18 страница - student2.ru

где átñ — среднее время между двумя последовательными соударениями электрона с ионами решетки.

Согласно теории Друде, в конце свободного пробега электрон, сталкиваясь с иона­ми решетки, отдает им накопленную в поле энергию, поэтому скорость его упорядочен­ного движения становится равной нулю. Следовательно, средняя скорость направлен­ного движения электрона

Тангенциальная составляющая ускорения 18 страница - student2.ru (103.1)

Классическая теория металлов не учитывает распределения электронов по скоро­стям, поэтому среднее время átñ свободного пробега определяется средней длиной свободного пробега álñ и средней скоростью движения электронов относительно кристаллической решетки проводника, равной áuñ + ávñ (áuñ — средняя скорость теп­лового движения электронов). В § 102 было показано, что ávñ<<áuñ, поэтому

Тангенциальная составляющая ускорения 18 страница - student2.ru

Подставив значение átñ в формулу (103.1), получим

Тангенциальная составляющая ускорения 18 страница - student2.ru

Плотность тока в металлическом проводнике, по (96.1),

Тангенциальная составляющая ускорения 18 страница - student2.ru

откуда видно, что плотность тока пропорциональна напряженности поля, т. е. получи­ли закон Ома в дифференциальной форме (ср. с (98.4)). Коэффициент пропорциональ­ности между j и E есть не что иное, как удельная проводимость материала

Тангенциальная составляющая ускорения 18 страница - student2.ru (103.2)

которая тем больше, чем больше концентрация свободных электронов и средняя длина их свободного пробега.

2. Закон Джоуля — Ленца. К концу свободного пробега электрон под действием поля приобретает дополнительную кинетическую энергию

Тангенциальная составляющая ускорения 18 страница - student2.ru (103.3)

При соударении электрона с ионом эта энергия полностью передается решетке и идет на увеличение внутренней энергии металла, т. е. на его нагревание.

За единицу времени электрон испытывает с узлами решетки в среднем ázñ сто­лкновений:

Тангенциальная составляющая ускорения 18 страница - student2.ru (103.4)

Если n — концентрация электронов, то в единицу времени происходит пázñ столкнове­ний и решетке передается энергия

Тангенциальная составляющая ускорения 18 страница - student2.ru (103.5)

которая идет на нагревание проводника. Подставив (103.3) и (103.4) в (103.5), получим таким образом энергию, передаваемую решетке в единице объема проводника за единицу времени,

Тангенциальная составляющая ускорения 18 страница - student2.ru (103.6)

Величина w является удельной тепловой мощностью тока (см. § 99). Коэффициент пропорциональности между w и E2 по (103.2) есть удельная проводимость g; следовате­льно, выражение (103.6)—закон Джоуля—Ленца в дифференциальной форме (ср. с (99.7)).

3. Закон Видемана— Франца. Металлы обладаюткак большой электропровод­ностью, так и высокой теплопроводностью. Это объясняется тем, что носителями тока и теплоты в металлах являются одни и те же частицы—свободные электроны, которые, перемещаясь в металле, переносят не только электрический заряд, но и присущую им энергию хаотического (теплового) движения, т. е. осуществляют перенос теплоты.

Видеманом и Францем в 1853 г. экспериментально установлен закон, согласно которому отношение теплопроводности (l) к удельной проводимости (g) для всех металлов при одной и той же температуре одинаково и увеличивается пропорциональ­но термодинамической температуре:

Тангенциальная составляющая ускорения 18 страница - student2.ru

где b — постоянная, не зависящая от рода металла.

Элементарная классическая теория электропроводности металлов позволила найти значение b: b=3(k/e)2, где k—постоянная Больцмана. Это значение хорошо согласуется с опытными данными. Однако, как оказалось впоследствии, это согласие теоретического значения с опытным случайно. Лоренц, применив к электронному газу статистику Максвелла — Больцмана, учтя тем самым распределение электронов по скоростям, получил b=2(k/e)2, что привело к резкому расхождению теории с опытом.

Таким образом, классическая теория электропроводности металлов объяснила законы Ома и Джоуля — Ленца, а также дала качественное объяснение закона Видемана — Франца. Однако она помимо рассмотренных противоречий в законе Видемана — Франца столкнулась еще с рядом трудностей при объяснении различных опыт­ных данных. Рассмотрим некоторые из них.

Температурная зависимость сопротивления. Из формулы удельной проводимости (103.2) следует, что сопротивление металлов, т. е. величина, обратно пропорциональ­ная g, должна возрастать пропорционально Тангенциальная составляющая ускорения 18 страница - student2.ru (в (103.2) п и álñ от температуры не зависят, а áuñ~ Тангенциальная составляющая ускорения 18 страница - student2.ru ). Этот вывод электронной теории противоречит опытным данным, согласно которым R~T (см. § 98).

Наши рекомендации