Локализация электронов в простейших наноструктурах

(размерное квантование)

В макромасштабе свободные электроны в твердом теле перемещаются по любому из трех пространственных направлений. В этом случае говорят, что электронный газ трехмерен.

Волна, соответствующая свободному электрону в твердом теле, может беспрепятственно распространяться в любом направлении. При уменьшении размеров полупроводникового прибора до микромасштабов это свойство также сохраняется вплоть до определенного предельного размера.

Локализация электронов в простейших наноструктурах - student2.ru Локализация электронов в простейших наноструктурах - student2.ru Локализация электронов в простейших наноструктурах - student2.ru

Ситуация кардинально меняется, когда электрон попадает в твердотельную структуру, размер которой L, по крайней мере в одном направлении, ограничен и по своей величине сравним с длиной волны де Бройля. Классическим аналогом такой структуры является струна с жестко закрепленными концами. Колебания струны могут происходить только в режиме стоячих волн с длиной волны Локализация электронов в простейших наноструктурах - student2.ru

Эффект, возникающий при ограничении или лимитировании движения электронов физическими размерами области, в которой он находится, называется эффектом локализации или размерным квантованием или квантовым размерным эффектом.

Квантовый размерный эффект связан с квантованием импульса электрона. Вследствие чего непрерывный энергетический спектр электронов распадается на дискретные уровни, т.е. происходит квантование энергии спектра электрона.

В этом случае

Локализация электронов в простейших наноструктурах - student2.ru

В результате такого квантования электрофизические свойства электронов, например, удельное сопротивление образца, начинает осциллировать в зависимости от наноразмера образца. Проиллюстрируем графиком:

Локализация электронов в простейших наноструктурах - student2.ru

Эффекты такого рода наблюдаются в таких квантовых структурах, как тонкие полупроводниковые или металлические пленки, узкие приповерхностные области пространственного заряда (узкие каналы). В общем случае условно графически такие структуры можно изобразить:

Локализация электронов в простейших наноструктурах - student2.ru

В квантовой яме электроны проводимости локализованы по одному измерению и не локализованы по двум остальным в плоскости, перпендикулярной этому измерению, т.е. электроны в яме – двухмерный электронный газ.

Исторически эффекты такого рода впервые были экспериментально обнаружены в 60-х годах в тонких пленках.

В настоящее время технология изготовления полупроводниковых наноструктур находится на высоком уровне и продолжает быстро совершенствоваться.

Гетеропереходы типа

GaAs│AlxGa1-xAs,

где х – доля атомов галлия, замещенных атомами алюминия

и структуры типа МДП являются наиболее хорошо изученными типами квантоворазмерных наноструктур.

Совершенствование технологии сейчас позволяет получать гетеропереходы на основе и таких традиционных полупроводниковых материалов, как Ge и Si.

Существует ряд методов, позволяющих создавать структуры, в которых движение электронов имеет одномерный и даже 0 – мерный характер.

наноструктура Размерность делокализации Размерность локализации
Объемный полупроводник 3 (x, y, z)
Квантовая яма 2 (x, z) 1 (y)
Квантовая проволока 1 (z) 2 (x, y)
Квантовая точка 3 (x, y, z)

Понижение размерности структур, учет и использование новых физических явлений является одним из главных направлений развития современной наноэлектроники. При этом важнейшие характеристики приборов (например, быстродействие) значительно улучшаются, что можно проиллюстрировать:

Локализация электронов в простейших наноструктурах - student2.ru

Физически движение электронов в таких структурах эквивалентно их движению в потенциальной яме, т.е. в ограниченной области, отделенной от остального пространства потенциальными барьерами. Простейший пример потенциальной ямы – прямоугольный колодец с очень крутыми стенками.

Наши рекомендации