Теорема Остроградского - Гаусса для поля в вакууме.


Из определения потока вектора напряженности сквозь замкнутую поверхность, поток вектора напряженности сквозь сферическую поверхность радиуса r, которая охватывает точечный заряд Q, находящийся в ее центре (рис. 1), равен

Этот результат справедлив для замкнутой поверхности произвольной формы. Действительно, если заключить сферу (рис. 1) в произвольную замкнутую поверхность, то каждая линия напряженности, которая пронизывает сферу, пройдет и сквозь эту поверхность.

В случае, если замкнутая поверхность любой формы охватывает заряд (рис. 2), то при пересечении любой линии напряженности с поверхностью она то входит в нее, то выходит из нее. При вычислении потока нечетное число пересечений в конечном счете сводится к одному пересечению, так как поток полагается положительным, если линии напряженности выходят из поверхности, и отрицательным для линий, которые входят в поверхность.


Если замкнутая поверхность не охватывает заряда, то поток сквозь нее равен нулю, так как число линий напряженности, которые входят в поверхность, равно числу линий напряженности, которые выходят из нее.

Значит, для поверхности произвольной формы, если она замкнута и заключает в себя точечный заряд Q, поток вектора Е будет равен Q/ε0, т. е.

(1)

Знак потока совпадает со знаком заряда Q.

Исследуем общий случай произвольной поверхности, окружающей n зарядов. Используя с принцип суперпозиции, напряженность Еполя, которая создавается всеми зарядами, равна сумме напряженностей Ei полей, которые создаваются каждым зарядом в отдельности. Поэтому

Согласно (1), каждый из интегралов, который стоит под знаком суммы, равен Qi/ε0. Значит,

(2)

Формула (2) выражает теорему Гаусса для электростатического поля в вакууме: поток вектора напряженности электростатического поля в вакууме сквозь произвольную замкнутую поверхность равен алгебраической сумме заключенных внутри этой поверхности зарядов, деленной на ε0. Эта теорема получена математически для векторного поля произвольной природы русским математиком М.В.Остроградским (1801—1862), а затем независимо от него применительно к электростатическому полю — К. Гауссом.

В общем случае электрические заряды могут быть распределены с некоторой объемной плотностью ρ=dQ/dV, которая различна в разных местах пространства. Тогда суммарный заряд, заключенный внутри замкнутой поверхности S, которая охватывает некоторый объем V,

(3)

Используя формулу (3), теорему Гаусса (2) можно записать так:

Наши рекомендации