Индуктивность контура. самоиндукция
Электрический ток, текущий в замкнутом контуре, создает вокруг себя магнитное поле, индукция которого, по закону Био-Савара- Лапласа, пропорциональна току. Сцепленный с контуром магнитный поток Ф при этом пропорционален току I в контуре:
,(16.3)
где коэффициент пропорциональности L назы-вается индуктивностьюконтура.
При изменении силы тока в контуре изменяется также и сцепленный с ним магнитный поток; следовательно, в контуре будет индуциро-ваться э.д.с. Возникновение э.д.с. индукции в проводящем контуре при изменении в нем силы тока называется самоиндукцией.
Из выражения (16.3) определяется единица индуктивности генри(Гн): 1 Гн — индуктивность такого контура, магнитный поток самоиндукции которого при токе в 1 А равен 1 Вб:
1 Гн=1 Вб/А=1 В∙с/А.
Индуктивность контура в общем случае зависит только от геометрической формы контура, его размеров и магнитной проницаемости той среды, в которой он находится. В этом смысле индуктивность контура — аналог электрической емкости уединенного проводника, которая также зависит только от формы проводника, его размеров и диэлектрической проницаемости среды.
Применяя к явлению самоиндукции закон Фарадея, получим, что э.д.с. самоиндукции
.
Если контур не деформируется и магнитная проницаемость среды не изменяется (в дальнейшем будет показано, что последнее условие выполняется не всегда), то L=const и
, (16.4)
где знак минус, обусловленный правилом Ленца, показывает, что наличие индуктивности в контуре приводит к замедлению изменения тока в нем.
Если ток со временем возрастает, то и Еs<0, т.е. ток самоиндукции направлен навстречу току, обусловленному внешним источником, и замедляет его возрастание. Если ток со временем убывает, то и Еs>0, т.е. индукционный ток имеет такое же направление, как и убывающий ток в контуре, и замедляет его убывание.
Таким образом, контур, обладая определенной индуктивностью, приобретает электрическую инертность, заключающуюся в том, что любое изменение тока тормозится тем сильнее, чем больше индуктивность контура.
Энергия магнитного поля
Проводник, по которому протекает элект-рический ток, всегда окружен магнитным полем, причем магнитное поле появляется и исчезает вместе с появлением и исчезновением тока. Магнитное поле, подобно электри-ческому, является носителем энергии. Естественно предположить, что энергия магнитного поля равна работе, которая затрачивается током на создание этого поля.
Рассмотрим контур индуктивностью L, по которому течет ток I. С данным контуром сцеплен магнитный поток Ф=LI,причем при изменении тока на dI магнитный поток изменяется на dФ=LdI. Однако для изменения магнитного потока на величину dФнеобхо-димо совершить работу dA=IdФ=LIdI. Тогда работа по созданию магнитного потока Ф будет равна
.
Следовательно, энергия магнитного поля, связанного с контуром,
. (16.9)
Исследование свойств переменных маг-нитных полей, в частности распространения электромагнитных волн, явилось доказатель-ством того, что энергия магнитного поля лока-лизована в пространстве. Это соответствует представлениям теории поля.