Аблица 2. Определение сопротивления лампы. 5 страница
Таблицы 2-5. Результаты измерений и расчётов
В = _______
v×103,м/с | ||||||||||
R1, см | ||||||||||
R2, см | ||||||||||
Т1/2, с | ||||||||||
q1/m1, Кл/кг q2/m2, Кл/кг | ||||||||||
Табличные значения: q1/m1 = q2/m2= |
ОБРАБОТК РЕЗУЛЬТАТОВ И ОФОРМЛЕНИЕ ОТЧЁТА:
1. Вычислите по формуле (4) удельные заряды изотопов углерода, неона, урана и неизвестного химического элемента и запишите полученные значения в соответствующие таблицы.
2. Используя справочные материалы по физике и химии, определите табличные значения удельных зарядов исследованных изотопов и сравните их с полученными в опыте.
3. Постройте график зависимости времени пролёта изотопов в камере масс-спектрометра от их скорости и сделайте выводы по результатам анализа этого графика.
4. Проведите оценку погрешностей проведённых измерений.
ПОЛЕЗНЫЕ СВЕДЕНИЯ:
Атомная единица массы (а.е.м.) = 1,660×10-27 кг.
Элементарный заряд е = 1,602×10-19 Кл.
Вопросы и задания для самоконтроля
1. Как определяется направление действия силы Лоренца?
2. Почему сила Лоренца не совершает работы?
3. Как будет двигаться заряженная частица в магнитном поле, если угол a между векторами и меньше p/2?
4. Ионы двух изотопов с массами m1 и m2 , имеющие одинаковый заряд и прошедшие в электрическом поле одинаковую ускоряющую разность потенциалов, влетают в магнитное поле перпендикулярно силовым линиям магнитного поля. Найдите отношение радиусов окружностей, по которым будут двигаться ионы в магнитном поле.
5. Определите, во сколько раз изменится радиус окружности, по которой заряженная частица движется в однородном магнитном поле, если её кинетическую энергию увеличить в n раз?
6. Определите удельный заряд иона, который в масс-спектрометре совершает один оборот за 628 мкс в однородном магнитном поле с индукцией 50 мТл.
7. Пучок ионов, влетающих в вакуумную камеру масс-спектрометра перпендикулярно силовым линиям однородного магнитного поля, расщепляется (рис.2). Определите, какая траектория соответствует: а) большему импульсу,
Рис.2
если ионы имеют одинаковые заряды, но разные импульсы; б) большему заряду, если частицы имеют одинаковые импульсы, но разные заряды?
8. Два электрона движутся в одном и том же однородном магнитном поле по орбитам с радиусами R1 R2 (R1> R2). Сравните их угловые скорости.
9. В однородном магнитном поле движутся по окружностям протон и a-частица, имея равные кинетические энергии. Какая из этих частиц будет иметь орбитальный магнитный момент и период вращения больше и во сколько раз?
10. Заряженная частица влетела в однородное магнитное поле под углом a < p/2 между векторами и . Определите, отличны ли от нуля тангенциальная и нормальная составляющие ускорения частицы?
11. Заряженная частица летит прямолинейно и равномерно в однородном электромагнитном поле, представленном суперпозицией взаимно перпендикулярных электрических (напряжённостью Е) и магнитных (индукцией В) полей. Найдите скорость движения частицы.
12. Заряженная частица вращается в однородном магнитном поле с индукцией В по окружности радиуса R. Параллельно магнитному полю возбуждается электрическое поле напряжённостью Е. Определите, сколько времени должно действовать электрическое поле, чтобы кинетическая энергия частицы возросла в два раза?
ЛАБОРАТОРНАЯ РАБОТА № 2.17
ПЕРЕХОДНЫЕ ПРОЦЕССЫ В ЦЕПЯХ ПОСТОЯННОГО ТОКА С КОНДЕНСАТОРОМ
Ознакомьтесь с теорией в конспекте и в учебниках 1. Трофимова Т.И. Курс физики. Гл.11, §94. 2. Детлаф А.А., Яворский Б.М. Курс физики. Гл.16, §16.3. Выберите: «ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ» и «Конденсаторы в цепях постоянного тока». Нажмите кнопку с изображением страницы во внутреннем окне. Прочитайте теорию и запишите основные сведения в свой конспект лабораторной работы. Закройте окно теории, нажав кнопку с крестом в правом верхнем углу внутреннего окна.
ЦЕЛЬ РАБОТЫ:
· Знакомство с компьютерным моделированием переходных процессов в цепях постоянного тока.
· Проверка закона сохранения энергии в цепях постоянного тока с конденсатором.
· Определение ёмкости конденсатора методом разрядки.
КРАТКАЯ ТЕОРИЯ:
ПЕРЕХОДНЫМ ПРОЦЕССОМ называется процесс перехода от одного установившегося в цепи режима к другому. Примером такого процесса является зарядка и разрядка конденсатора. В ряде случаях законы постоянного тока можно применять и к изменяющимся токам, когда изменение тока происходит не слишком быстро. В этих случаях мгновенное значение силы тока будет практически одно и то же во всех поперечных сечениях цепи. Такие токи называют квазистационарными
РАЗРЯДКА КОНДЕНСАТОРА. Если обкладки заряженного конденсатора ёмкости С замкнуть через сопротивление R, то через это сопротивление потечёт ток. Согласно закону Ома для однородного участка цепи
IR=U,
где I и U – мгновенные значения силы тока в цепи и напряжения на обкладках конденсатора. Учитывая, что и , преобразуем закон Ома к виду
(1)
В этом дифференциальном уравнении переменные разделяются, и после интегрирования получим закон изменения заряда конденсатора со временем
, (2)
где q0 - начальный заряд конденсатора, е - основание натурального логарифма. Произведение RC, имеющее размерность времени, называется время релаксации t . Продифференцировав выражение (2) по времени, найдём закон изменения тока:
, (3)
где I0 - сила тока в цепи в момент времени t = 0. Из уравнения (3) видно, что t есть время, за которое сила тока в цепи уменьшается в е раз.
Зависимость от времени количества теплоты, выделившегося на сопротивлении R при разряде конденсатора можно найти из закона Джоуля-Ленца:
(4)
ЗАРЯДКА КОНДЕСАТОРА.
Считаем, что первоначально конденсатор не заряжен. В момент времени t = 0 ключ замкнули, и в цепи пошёл ток, заряжающий конденсатор. Увеличивающиеся заряды на обкладках конденсатора будут всё в большей степени препятствовать прохождению тока, постепенно уменьшая его. Запишем закон Ома для этой замкнутой цепи:
.
После разделения переменных уравнение примет вид:
Проинтегрировав это уравнение с учётом начального условия
q = 0 при t = 0 и с учётом того, что при изменении времени от 0 до t заряд изменяется от 0 до q, получим
, или после потенцирования
q = . (4)
Анализ этого выражения показывает, что заряд приближается к своему максимальному значению, равному С , асимптотически при t ® ¥.
Подставляя в формулу (4) функцию I(t) = dq/dt, получим
. (5)
Из закона сохранения энергии следует, что при зарядке конденсатора для любого момента времени работа источника тока dАист рана сумме количества джоулевой теплоты dQ, выделившейся на резисторе R и изменению энергии конденсатора dW:
dAист= dQ + dW,
где dAист = Idt, dQ =I2Rdt, dW =d . Тогда для произвольного момента времени t имеем:
Аист(t)= = =С . (6)
Q(t)= =С .(7)
W(t) = = . (8)
МЕТОДИКА И ПОРЯДОК ИЗМЕРЕНИЙ:
В реальных электрических цепях постоянного тока, содержащих конденсаторы, переходные процессы разрядки и зарядки конденсаторов проходят за время порядка 10–6 – 10-3 с. Для того,чтобы сделать доступными для наблюдения и измерения электрические параметры при переходных процессах в настоящей компьютерной модели это время значительно увеличено за счёт увеличения ёмкости конденсатора.
ЭКСПЕРИМЕНТ 1. Определение ёмкости конденсатора методом разрядки
1.Соберите на рабочей части экрана замкнутую электрическую цепь, показанную ниже на рис.2. Для этого сначала щёлкните мышью на кнопке э.д.с.,расположенной в правой части окна эксперимента. Переместите маркер мыши на рабочую часть экрана, где расположены точки, и щёлкните маркером мыши в виде вытянутого указательного пальца в том месте, где должен быть расположен источник тока. Подведите маркер мыши к движку появившегося регулятора э.д.с., нажмите на левую кнопку мыши, удерживая её в нажатом состоянии, меняйте величину э.д.с. и установите 10 В. Аналогичным образом включите в цепь 4 других источника тока. Суммарная величина э.д.с. батареи должна соответствовать значению, указанному в таблице 1 для вашей бригады.
Таким же образом разместите далее на рабочей части экрана 7 ламп Л1-Л7 ( кнопка ), Ключ К (кнопка ), вольтметр (кнопка ), амперметр (кнопка ), конденсатор (кнопка ). Все элементы электрической цепи соедините по схеме рис.1 с помощью монтажных проводов (кнопка ).
2. Щёлкните мышью на кнопке «Старт». Должна засветиться лампа Л7, а надпись на кнопке измениться на «Стоп». Курсором мыши замкните ключ К.
3. После установления в цепи стационарного тока ( должны погаснуть лампы Л5 и Л6 и светиться лампы Л1-Л4) запишите показания электроизмерительных приборов в таблицу 2.
4. Нажмите на кнопку «Стоп» и курсором мыши разомкните ключ К.
5. Двумя короткими щелчками мыши на кнопке «Старт» запустите и остановите процесс разрядки конденсатора. Показания амперметра будут соответствовать начальному току разрядки конденсатора I0. Запишите это значение в таблицу 3.
6. Вновь замкните ключ, зарядите конденсатор и повторите п.п. 5, 6 ещё 4 раза.
7. Для каждого опыта рассчитайте It= I0/2,7- силу тока, которая должна быть в цепи разрядки конденсатора через время релаксации t и запишите эти значения в таблицу 3.
8. При разомкнутом ключе нажатием кнопки «Старт» запустите процесс разрядки конденсатора и одновременно включите секундомер.
9. Внимательно наблюдайте за изменением показаний амперметра в процессе разрядки конденсатора. Остановите секундомер и синхронно нажмите кнопку «Стоп» при показании амперметра, равном или близким к It. Запишите это значение времени t1 в таблицу 3.
10. Проделайте опыты п.п.8, 9 ещё 4 раза.
Таблица 1. Суммарное значение э.д.с. источников тока
Бригада | ||||||||
Э.д.с.,В |
аблица 2. Определение сопротивления лампы.
№п/п | I, А | U, В | R, Ом |
Номер опыта | Среднее значение | |||||
I0, А | ||||||
It, А | ||||||
t, с | ||||||
C, Ф |