Тангенциальная составляющая ускорения 17 страница

Так как поле сосредоточено внутри конденсатора, то линии напряженности начина­ются на одной обкладке и кончаются на другой, поэтому свободные заряды, воз­никающие на разных обкладках, являются равными по модулю разноименными заря­дами. Подемкостью конденсатора понимается физическая величина, равная отноше­нию заряда Q, накопленного в конденсаторе, к разности потенциалов (j1 —j2) между его обкладками:

Тангенциальная составляющая ускорения 17 страница - student2.ru (94.1)

Рассчитаем емкость плоского конденсатора, состоящего из двух параллельных металлических пластин площадью S каждая, расположенных на расстоянии d друг от друга и имеющих заряды +Q и –Q. Если расстояние между пластинами мало по сравнению с их линейными размерами, то краевыми эффектами можно пренебречь и поле между обкладками считать однородным. Его можно рассчитать используя формулы (86.1) и (94.1). При наличии диэлектрика между обкладками разность потенциалов между ними, согласно (86.1),

Тангенциальная составляющая ускорения 17 страница - student2.ru (94.2)

где e — диэлектрическая проницаемость. Тогда из формулы (94.1), заменяя Q=sS, с учетом (94.2) получим выражение для емкости плоского конденсатора:

Тангенциальная составляющая ускорения 17 страница - student2.ru (94.3)

Для определения емкости цилиндрического конденсатора, состоящего из двух полых коаксиаль­ных цилиндров с радиусами r1 и r2 (r2 > r1), вставленных один в другой, опять пренебрегая краевыми эффектами, считаем поле радиально-симметричным и сосредоточенным между цилиндрическими обкладками. Разность потенциалов между обкладками вычислим по формуле (86.3) для поля равномерно заряженного бесконечного цилиндра с линейной плотностью t =Q/l (l—длина об­кладок). При наличии диэлектрика между обкладками разность потенциалов

Тангенциальная составляющая ускорения 17 страница - student2.ru (94.4)

Подставив (94.4) в (94.1), получим выражение для емкости цилиндрического конденсатора:

Тангенциальная составляющая ускорения 17 страница - student2.ru (94.5)

Для определения емкости сферического конденсатора, состоящего из двух концентрических обкладок, разделенных сферическим слоем диэлектрика, используем формулу (86.2) для разности потенциалов между двумя точками, лежащими на расстояниях r1 и r2 (r2 > r1) от центра заряженной сферической поверхности. При наличии диэлектрика между обкладками разность потенциалов

Тангенциальная составляющая ускорения 17 страница - student2.ru (94.6)

Подставив (94.6) в (94.1), получим

Тангенциальная составляющая ускорения 17 страница - student2.ru

Если d=r2—r1<<r1, то r2 » r1 » r и C=4pe0er2/d. Так как 4pr2 —площадь сферической обкладки, то получаем формулу (94.3). Таким образом, при малой величине зазора по сравнению с радиусом сферы выражения для емкости сферического а плоского конденсаторов совпадают. Этот вывод справедлив и для цилиндрического конденсатора: при малом зазоре между цилиндрами по сравнению с их радиусами в формуле (94.5) ln (r2/r1) можно разложить в ряд, ограничиваясь только членом первого порядка. В результате опять приходим к формуле (94.3).

Из формул (94.3), (94.5) и (94.7) вытекает, что емкость конденсаторов любой формы прямо пропорциональна диэлектрической проницаемости диэлектрика, заполняющего пространство между обкладками. Поэтому применение в качестве прослойки сегнетоэлектриков значительно увеличивает емкость конденсаторов.

Конденсаторы характеризуются пробивным напряжением — разностью потенциа­лов между обкладками конденсатора, при которой происходит пробой — электричес­кий разряд через слой диэлектрика в конденсаторе. Пробивное напряжение зависит от формы обкладок, свойств диэлектрика и его толщины.

Для увеличения емкости и варьирования ее возможных значений конденсаторы соединяют в батареи, при этом используется их параллельное и последовательное соединения.

1. Параллельное соединение конденсаторов (рис. 144). У параллельно соединенных конденсаторов разность потенциалов на обкладках конденсаторов одинакова и равна jA – jB. Если емкости отдельных конденсаторов С1, С2, ..., Сn, то, согласно (94.1), их заряды равны

Тангенциальная составляющая ускорения 17 страница - student2.ru

а заряд батареи конденсаторов

Тангенциальная составляющая ускорения 17 страница - student2.ru

Полная емкость батареи

Тангенциальная составляющая ускорения 17 страница - student2.ru

т. е. при параллельном соединении конденсаторов она равна сумме емкостей отдель­ных конденсаторов.

2. Последовательное соединение конденсаторов (рис. 145). У последовательно соеди­ненных конденсаторов заряды всех обкладок равны по модулю, а разность потенци­алов на зажимах батареи

Тангенциальная составляющая ускорения 17 страница - student2.ru

где для любого из рассматриваемых конденсаторов Dji = Q/Сi. С другой стороны,

Тангенциальная составляющая ускорения 17 страница - student2.ru

Тангенциальная составляющая ускорения 17 страница - student2.ru

откуда

Тангенциальная составляющая ускорения 17 страница - student2.ru

т. е. при последовательном соединении конденсаторов суммируются величины, об­ратные емкостям. Таким образом, при .последовательном соединении конденсаторов результирующая емкость С всегда меньше наименьшей емкости, используемой в ба­тарее.

§ 95. Энергия системы зарядов, уединенного проводника и конденсатора. Энергия электростатического поля

1. Энергия системы неподвижных точечных зарядов. Электростатические силы взаимо­действия консервативны (см. § 83); следовательно, система зарядов обладает потенци­альной энергией. Найдем потенциальную энергию системы двух неподвижных точеч­ных зарядов Q1и Q2, находящихся на расстоянии r друг от друга. Каждый из этих зарядов в поле другого обладает потенциальной энергией (см. (84.2) и (84.5)):

Тангенциальная составляющая ускорения 17 страница - student2.ru

где j12 и j21 — соответственно потенциалы, создаваемые зарядом Q2 в точке нахожде­ния заряда Q1 и зарядом Q1 в точке нахождения заряда Q2. Согласно (84.5),

Тангенциальная составляющая ускорения 17 страница - student2.ru

поэтому W1 = W2 = W и

Тангенциальная составляющая ускорения 17 страница - student2.ru

Добавляя к системе из двух зарядов последовательно зарядыQ3, Q4, ... , можно убедиться в том, что в случае n неподвижных зарядов энергия взаимодействия системы точечных зарядов равна

Тангенциальная составляющая ускорения 17 страница - student2.ru (95.1)

где ji — потенциал, создаваемый в той точке, где находится заряд Qi, всеми зарядами, кроме i-го.

2. Энергия заряженного уединенного проводника. Пусть имеется уединенный провод­ник, заряд, емкость и потенциал которого соответственно равны Q, С, j. Увеличим заряд этого проводника на dQ. Для этого необходимо перенести заряд dQ из бесконеч­ности на уединенный проводник, затратив на это работу, равную

Тангенциальная составляющая ускорения 17 страница - student2.ru

Тангенциальная составляющая ускорения 17 страница - student2.ru

Чтобы зарядить тело от нулевого потенциала до j, необходимо совершить работу

Тангенциальная составляющая ускорения 17 страница - student2.ru (95.2)

Энергия заряженного проводника равна той работе, которую необходимо совер­шить, чтобы зарядить этот проводник:

Тангенциальная составляющая ускорения 17 страница - student2.ru (95.3)

Формулу (95.3) можно получить и из того, что потенциал проводника во всех его точках одинаков, так как поверхность проводника является эквипотенциальной. Пола­гая потенциал проводника равным j, из (95.1) найдем

Тангенциальная составляющая ускорения 17 страница - student2.ru

где Тангенциальная составляющая ускорения 17 страница - student2.ru - заряд проводника.

3. Энергия заряженного конденсатора. Как всякий заряженный проводник, конден­сатор обладает энергией, которая в соответствии с формулой (95.3) равна

Тангенциальная составляющая ускорения 17 страница - student2.ru (95.4)

где Q — заряд конденсатора, С — его емкость, Dj — разность потенциалов между обкладками конденсатора.

Используя выражение (95.4), можно найтимеханическую (пондеромоторную) силу, с которой пластины конденсатора притягивают друг друга. Для этого предположим, что расстояние х между пластинами меняется, например, на величину dx. Тогда действующая сила совершает работу dA=Fdx вследствие уменьшения потенциальной энергии системы Fdx = — dW, откуда

Тангенциальная составляющая ускорения 17 страница - student2.ru (95.5)

Подставив в (95.4) выражение (94.3), получим

Тангенциальная составляющая ускорения 17 страница - student2.ru (95.6)

Производя дифференцирование при конкретном значении энергии (см. (95.5) и (95.6)), найдем искомую силу:

Тангенциальная составляющая ускорения 17 страница - student2.ru

где знак минус указывает, что сила F является силой притяжения.

4. Энергия электростатического поля. Преобразуем формулу (95.4), выражающую энергию плоского конденсатора посредством зарядов и потенциалов, воспользовав­шись выражением для емкости плоского конденсатора (C=e0eS/d) и разности потенци­алов между его обкладками (Dj=Ed. Тогда

Тангенциальная составляющая ускорения 17 страница - student2.ru (95.7)

где V= Sd — объем конденсатора. Формула (95.7) показывает, что энергия конден­сатора выражается через величину, характеризующую электростатическое поле, — на­пряженность Е.

Объемная плотность энергии электростатического поля (энергия единицы объема)

Тангенциальная составляющая ускорения 17 страница - student2.ru (95.8)

Выражение (95.8) справедливо только дляизотропного диэлектрика, для которого выполняется соотношение (88.2):Р ={e0Е.

Формулы (95.4) и (95.7) соответственно связывают энергию конденсатора с зарядом на его обкладках и с напряженностью поля. Возникает, естественно, вопрос о локализа­ции электростатической энергии и что является ее носителем — заряды или поле? Ответ на этот вопрос может дать только опыт. Электростатика изучает постоянные во времени поля неподвижных зарядов, т. е. в ней поля и обусловившие их заряды неотделимы друг от друга. Поэтому электростатика ответить на поставленные воп­росы не может. Дальнейшее развитие теории и эксперимента показало, что переменные во времени электрические и магнитные поля могут существовать обособленно, независимо от возбудивших их зарядов, и распространяются в пространстве в виде электромагнитных волн, способных переносить энергию. Это убедительно подтверждает основ­ное положение теории близкодействия о том, что энергия локализована в поле и что носителем энергии является поле.

Задачи

11.1. Два заряженных шарика, подвешенных на нитях одинаковой длины, опускают­ся в керосин плотностью 0,8 г/см3. Какова должна быть плотность материала шариков, чтобы угол расхождения нитей в воздухе и керосине был один и тот же? Диэлектричес­кая проницаемость керосина e=2. [1,6 г/см3]

11.2. На некотором расстоянии от бесконечной равномерно заряженной плоскости с поверх­ностной плотностью s =1,5 нКл/см2 расположена круглая пластинка. Плоскость пластин­ки составляет с линиями напряженности угол a=45°. Определить поток вектора напря­женности через эту пластинку, если ее радиус r=10 см. [1,88 кВ×м]

11.3. Кольцо радиусом r=10 см из тонкой проволоки равномерно заряжено с линейной плотностью t =10 нКл/м. Определить напряженность поля на оси, проходящей через центр кольца в точке А. удаленной на расстояние а =20 см от центра кольца. [1 кВ/м]

11.4. Шар радиусом R=10 см заряжен равномерно с объемной плотностью r =5 нКл/м3. Определить напряженность электростатического поля: 1) на расстоянии r1=2 см от центра шара; 2) на расстоянии r2=12 см от центра шара. Построить зависимость Е(r). [1) 3,77 В/м; 2) 13,1 В/м]

11.5. Электростатическое поле создается положительно заряженной бесконечной нитью с по­стоянной линейной плотностью t = 1 нКл/см. Какую скорость приобретет электрон, при­близившись под действием поля к нити вдоль линии напряженности с расстояния r1=2,5 см до r2=1,5 см? [18 Мм/с]

11.6. Электростатическое поле создается сферой радиусом R=4 см, равномерно заряжен­ной с поверхностной плотностью s =1 нКл/м2. Определить разность потенциалов между двумя точками поля, лежащими на расстояниях r1=6 см и r2=10 см. [1,2 В]

11.7. Определить линейную плотность бесконечно длинной заряженной нити, если работа сил поля по перемещению заряда Q =1 нКл с расстояния r1 =10 см до r2 = 5 см в направле­нии, перпендикулярном нити, равна 0,1 мДж. [8 мкКл/м]

11.8. Пространство между обкладками плоского конденсатора заполнено парафином (e = 2). Расстояние между пластинами d=8,85 мм. Какую разность потенциалов необходимо подать на пластины, чтобы поверхностная плотность связанных зарядов на парафине составляла 0,05 нКл/см2? [500 В]

11.9. Свободные заряды равномерно распределены с объемной плотностью r =10 нКл/м3 по шару радиусом R = 5 см из однородного изотропного диэлектрика с диэлектрической проницаемостью e=6. Определить напряженности электростатического поля на расстоя­ниях r1 = 2 см и r2 = 10 см от центра шара. [E1=1,25 В/м; E2=23,5 В/м]

11.10. Пространство между пластинами плоского конденсатора заполнено стеклом (e = 7). Рас­стояние между пластинами d=5 мм, разность потенциалов U=500 В. Определить энер­гию поляризованной стеклянной пластины, если ее площадь S = 50 см2. [6,64 мкДж]

11.11. Плоский воздушный конденсатор емкостью С=10 пФ заряжен до разности потенциа­лов U=1 кВ. После отключения конденсатора от источника напряжения расстояние между пластинами конденсатора было увеличено в два раза. Определить: 1) разность потенциалов на обкладках конденсатора после их раздвижения; 2) работу внешних сил по раздвижению пластин. [1) 2 кВ; 2) 5 мкДж]

11.12. Разность потенциалов между пластинами конденсатора U=200 В. Площадь каждой пластины S=100 см2, расстояние между пластинами d=1 мм, пространство между ними заполнено парафином (e = 2). Определить силу притяжения пластин друг к другу. [3,54 мН]

Глава 12Постоянный электрический ток

§ 96. Электрический ток, сила и плотность тока

В электродинамике — разделе учения об электричестве, в котором рассматриваются явления и процессы, обусловленные движением электрических зарядов или макроско­пических заряженных тел, — важнейшим понятием является понятие электрического тока. Электрическим током называется любое упорядоченное (направленное) движение электрических зарядов. В проводнике под действием приложенного электрического поля Е свободные электрические заряды перемещаются: положительные — по полю, отрицательные — против поля (рис. 146, а), т. е. в проводнике возникает электричес­кий ток, называемый током проводимости. Если же упорядоченное движение электрических зарядов осуществляется перемещением в пространстве заряженного макроскопического тела (рис. 146, б), то возникает так называемый конвекционный ток.

Для возникновения и существования электрического тока необходимо, с одной стороны, наличие свободных носителей тока — заряженных частиц, способных переме­щаться упорядоченно, а с другой — наличие электрического поля, энергия которого, каким-то образом восполняясь, расходовалась бы на их упорядоченное движение. За направление тока условно принимают направление движения положительных зарядов.

Количественной мерой электрического тока служит сила тока I скалярная физи­ческая величина, определяемая электрическим зарядом, проходящим через поперечное сечение проводника в единицу времени:

Тангенциальная составляющая ускорения 17 страница - student2.ru

Если сила тока и его направление не изменяются со временем, то такой ток называется постоянным. Для постоянного тока

Тангенциальная составляющая ускорения 17 страница - student2.ru

Тангенциальная составляющая ускорения 17 страница - student2.ru

где Q — электрический заряд, проходящий за время t через поперечное сечение провод­ника. Единила силы тока — ампер (А).

Физическая величина, определяемая силой тока, проходящего через единицу площа­ди поперечного сечения проводника, перпендикулярного направлению тока, называется плотностью тока:

Тангенциальная составляющая ускорения 17 страница - student2.ru

Выразим силу и плотность тока через скорость ávñ упорядоченного движения зарядов в проводнике. Если концентрация носителей тока равна n и каждый носитель имеет элементарный заряд е (что не обязательно для ионов), то за время dt через поперечное сечение S проводника переносится заряд dQ=ne ávñ S dt. Сила тока

Тангенциальная составляющая ускорения 17 страница - student2.ru

а плотность тока

Тангенциальная составляющая ускорения 17 страница - student2.ru (96.1)

Плотность тока — вектор, ориентированный по направлению тока, т. е. направление вектора j совпадает с направлением упорядоченного движения положительных зарядов. Единица плотности тока — ампер на метр в квадрате (А/м2).

Сила тока сквозь произвольную поверхность S определяется как поток вектора j, т. е.

Тангенциальная составляющая ускорения 17 страница - student2.ru (96.2)

где dS=ndS (n — единичный вектор нормали к площадке dS, составляющей с век­тором j угол a).

§ 97. Сторонние силы. Электродвижущая сила и напряжение

Если в цепи на носители тока действуют только силы электростатического поля, то происходит перемещение носителей (они предполагаются положительными) от точек с большим потенциалом к точкам с меньшим потенциалом. Это приведет к выравнива­нию потенциалов во всех точках цепи и к исчезновению электрического поля. Поэтому для существования постоянного тока необходимо наличие в цепи устройства, способ­ного создавать и поддерживать разность потенциалов за счет работы сил неэлект­ростатического происхождения. Такие устройства называютсяисточниками тока. Силы неэлектростатического происхождения, действующие на заряды со стороны источников тока, называютсясторонними.

Природа сторонних сил может быть различной. Например, в гальванических элементах они возникают за счет энергии химических реакций между электродами и электролитами; в генераторе — за счет механической энергии вращения ротора генератора и т. п. Роль источника тока в электрической цепи, образно говоря, такая же, как роль насоса, который необходим для перекачивания жидкости в гидравлической системе. Под действием создаваемого поля сторонних сил электрические заряды движутся внутри источника тока против сил электростатического поля, благодаря чему на концах цепи поддерживается разность потенциалов и в цепи течет постоянный электрический ток.

Сторонние силы совершают работу по перемещению электрических зарядов. Физи­ческая величина, определяемая работой, совершаемой сторонними силами при переме­щении единичного положительного заряда, называетсяэлектродвижущей силой (э.д.с.),действующей в цепи:

Тангенциальная составляющая ускорения 17 страница - student2.ru (97.1)

Эта работа производятся за счет энергии, затрачиваемой в источнике тока, поэтому величину Тангенциальная составляющая ускорения 17 страница - student2.ru можно также называть электродвижущей силой источника тока, включен­ного в цепь. Часто, вместо того чтобы сказать: «в цепи действуют сторонние силы», говорят: «в цепи действует э.д.с.», т. е. термин «электродвижущая сила» употребляет­ся как характеристика сторонних сил. Э.д.с., как и потенциал, выражается в вольтах (ср. (84.9) и (97.1)).

Сторонняя сила Fст, действующая на заряд Q0, может быть выражена как

Тангенциальная составляющая ускорения 17 страница - student2.ru

где Е — напряженность поля сторонних сил. Работа же сторонних сил по перемещению заряда Q0 на замкнутом участке цепи равна

Тангенциальная составляющая ускорения 17 страница - student2.ru (97.2)

Разделив (97.2) на Q0, получим выражение для э. д. с., действующей в цепи:

Тангенциальная составляющая ускорения 17 страница - student2.ru

т. е. э.д.с., действующая в замкнутой цепи, может быть определена как циркуляция вектора напряженности поля сторонних сил. Э.д.с., действующая на участке 1—2, равна

Тангенциальная составляющая ускорения 17 страница - student2.ru (97.3)

На заряд Q0 помимо сторонних сил действуют также силы электростатического поля Fe=Q0E. Таким образом, результирующая сила, действующая в цепи на заряд Q0, равна

Тангенциальная составляющая ускорения 17 страница - student2.ru

Работа, совершаемая результирующей силой над зарядом Q0 на участке 1—2, равна

Тангенциальная составляющая ускорения 17 страница - student2.ru

Используя выражения (97.3) и (84.8), можем записать

Тангенциальная составляющая ускорения 17 страница - student2.ru (97.4)

Для замкнутой цепи работа электростатических сил равна нулю (см. § 83), поэтому в данном случае Тангенциальная составляющая ускорения 17 страница - student2.ru

Напряжением U на участке 1—2 называется физическая величина, определяемая работой, совершаемой суммарным полем электростатических (кулоновских) и сторон­них сил при перемещении единичного положительного заряда на данном участке цепи. Таким образом, согласно (97.4),

Тангенциальная составляющая ускорения 17 страница - student2.ru

Понятие напряжения является обобщением понятия разности потенциалов: напря­жение на концах участка цепи равно разности потенциалов в том случае, если на этом участке не действует Э.д.с., т. е. сторонние силы отсутствуют.

§ 98. Закон Ома. Сопротивление проводников

Немецкий физик Г. Ом (1787;—1854) экспериментально установил, что сила тока I, текущего по однородному металлическому проводнику (т. е. проводнику, в котором не действуют сторонние силы), пропорциональна напряжению U на концах проводника:

Тангенциальная составляющая ускорения 17 страница - student2.ru (98.1)

где R — электрическое сопротивление проводника. Уравнение (98.1) выражает закон Ома для участка цепи (не содержащего источника тока): сала тока в проводнике прямо пропорциональна приложенному напряжению и обратно пропорциональна сопротив­лению проводника. Формула (98.1) позволяет установить единицу сопротивления — ом (Ом): 1 Ом — сопротивление такого проводника, в котором при напряжении 1 В течет постоянный ток 1 А. Величина

Тангенциальная составляющая ускорения 17 страница - student2.ru

называется электрической проводимостью проводника. Единица проводимости — сименс (См): 1 См — проводимость участка электрической цепи сопротивлением 1 Ом.

Сопротивление проводников зависит от его размеров и формы, а также от матери­ала, из которого проводник изготовлен. Для однородного линейного проводника сопротивление R прямо пропорционально его длине l и обратно пропорционально площади его поперечного сечения S:

Тангенциальная составляющая ускорения 17 страница - student2.ru (98.2)

где r — коэффициент пропорциональности, характеризующий материал проводника и называемыйудельным электрическим сопротивлением. Единица удельного элект­рического сопротивления — ом×метр (Ом×м). Наименьшим удельным сопротивлением обладают серебро (1,6×10–8 Ом×м) и медь (1,7×10–8 Ом×м). На практике наряду с медными применяются алюминиевые провода. Хотя алюминий и имеет большее, чем медь, удельное сопротивление (2,6×10–8 Ом×м), но зато обладает меньшей плотностью по сравнению с медью.

Закон Ома можно представить в дифференциальной форме. Подставив выражение для сопротивления (98.2) в закон Ома (98.1), получим

Тангенциальная составляющая ускорения 17 страница - student2.ru (98.3)

где величина, обратная удельному сопротивлению,

Тангенциальная составляющая ускорения 17 страница - student2.ru

называетсяудельной электрической проводимостью вещества проводника. Ее едини­ца — сименс на метр (См/м). Учитывая, что U/l = Е — напряженность электрического поля в проводнике, I/S = j — плотность тока, формулу (98.3) можно записать в виде

Тангенциальная составляющая ускорения 17 страница - student2.ru (98.4)

Тангенциальная составляющая ускорения 17 страница - student2.ru

Так как в изотропном проводнике носители тока в каждой точке движутся в направле­нии вектора Е, то направления j и Е совпадают. Поэтому формулу (98.4) можно записать в виде

Тангенциальная составляющая ускорения 17 страница - student2.ru (98.5)

Выражение (98.5) — закон Ома в дифференциальном форме, связывающий плотность тока в любой точке внутри проводника с напряженностью электрического поля в этой же точке. Это соотношение справедливо и для переменных полей.

Опыт показывает, что в первом приближении изменение удельного сопротивления, а значит и сопротивления, с температурой описывается линейным законом:

Тангенциальная составляющая ускорения 17 страница - student2.ru

где r и r0, R и R0 — соответственно удельные сопротивления и сопротивления провод­ника при t и 0°С, a —температурный коэффициент сопротивления, для чистых металлов (при не очень низких температурах) близкий к 1/273 К–1. Следовательно, температур­ная зависимость сопротивления может быть представлена в виде

Наши рекомендации