Вселенная на булавочной головке (и почему мы не проваливаемся сквозь землю) 3 страница
Одна волновая функция симметрична по отношению к центру двух ям, а другая антисимметрична (так они и помечены на рисунке). Под симметрией мы имеем в виду то, что левая волна зеркально отражает правую. Под антисимметрией – то, что левая волна будет зеркальным отражением правой только после того, как повернется вверх ногами. Терминология не так важна. Важно то, что в области между двумя ямами эти волны различаются. Именно эта незначительная разница и показывает, что они описывают состояния с очень мало различающимися энергиями, но все же различающимися. Поэтому поворот одной из волн вверх ногами действительно имеет значение, но очень небольшое, если ямы достаточно глубоки или достаточно взаимоудалены.
Если считать, что частицы имеют определенную энергию, можно запутаться, потому что, как мы только что выяснили, они описываются волновыми функциями, имеющими одинаковый размер в обеих ямах. Это подразумевает равную вероятность обнаружения электрона в обеих ямах, даже если эти ямы разделяет вся Вселенная.
Как изобразить происходящее в том случае, когда мы помещаем один электрон в одну яму, а второй электрон в другую? Мы уже говорили, что ожидаем наполнения изначально пустой ямы циферблатами, что будет отображать вероятность того, что частица может перескочить с одной стороны на другую. Мы даже намекнули на ответ, сказав, что волновая функция «размазывается» туда‑сюда. Чтобы увидеть, как это происходит в действительности, заметим, что можно выразить состояние, локализованное на одном из протонов, через сумму двух волновых функций с самой низкой энергией. Мы показали это на рис. 8.2, но что это значит? Если электрон находится в определенное время в конкретной яме, это предполагает, что у него отсутствует определенная энергия. А именно: измерение его энергии даст значение, равное одному из двух возможных значений, соответствующих двум состояниям определенной энергии, которые образуют волновую функцию. Таким образом, электрон находится в двух энергетических состояниях. Мы надеемся, что на этой стадии книги подобная идея вам уже не в новинку. Но вот что интересно: поскольку эти два состояния обладают не совсем одинаковой энергией, стрелки их циферблатов вращаются с немного разной скоростью.
Рис. 8.2. Вверху: электрон, локализованный в левой яме, можно представить как сумму двух состояний с самой низкой энергией. Внизу: точно так же электрон, локализованный в правой яме, можно представить как разность двух состояний с самой низкой энергией
В результате частица, изначально названная локализованной вокруг одного протона волновой функцией, со временем будет описываться волновой функцией, размещенной вокруг другого протона. Не вдаваясь в детали, достаточно сказать, что этот феномен аналогичен тому, как две звуковые волны примерно одной частоты складываются, давая в результате волну, которая сначала будет громкой (когда две волны находятся в фазе), а затем, через некоторое время, тихой (когда две волны окажутся в противофазе). Это явление называется биениями . Когда частота волн становится все ближе, временной интервал между громким и тихим периодами увеличивается, пока, наконец, волны не обретают совершенно одинаковую частоту, образуя чистый тон. Все это знакомо любому музыканту, который, возможно, неосознанно пожинает плоды этой сферы волновой физики, пользуясь камертоном. То же самое происходит и со вторым электроном, расположенным во второй яме. Он тоже со временем переходит из одной ямы в другую, и его поведение с зеркальной точностью отражает поведение первого электрона. Хотя в начале эксперимента один электрон находится в одной яме, а другой – во второй, через довольно долгое время электроны поменяются местоположением.
Теперь используем то, что усвоили ранее. Очень интересная физика происходит, когда мы начинаем приближать атомы друг к другу. В нашей модели приближение атомов соответствует сужению барьера, отделяющего две ямы. Когда барьер истончается, волновые функции начинают сливаться, и вероятность того, что электрон окажется между двумя протонами, увеличивается. Рис. 8.3 иллюстрирует, как выглядят четыре волновые функции с самой низкой энергией, когда барьер становится тоньше. Интересно, что волновая функция с самой низкой энергией начинает напоминать волну‑синусоиду с самой низкой энергией, которую мы получили бы, если бы имели дело с одиночным электроном и одиночной широкой ямой. То есть два пика сливаются, образуя единый пик (с небольшим углублением). В то же время волновая функция для чуть более высокой энергии тоже весьма похожа на волну‑синусоиду, соответствующую чуть более высокой энергии для одиночной широкой ямы. Этого и следовало ожидать, потому что чем у же барьер между ямами, тем слабее его эффект, и со временем, когда барьера вовсе не останется, эффект его станет равен нулю, так что наш электрон будет вести себя точно так же, как в одиночной яме.
Рис. 8.3. Напоминает рис. 8.1, только ямы находятся ближе друг к другу. «Протечка» в пространство между ямами возрастает. В отличие от рис. 8.1, мы показываем также волновые функции, соответствующие паре энергетических уровней с чуть более низкой энергией, чем минимальная
Увидев, что происходит в крайних случаях (когда ямы находятся очень далеко и очень близко друг от друга), мы можем закончить картину рассмотрением варьирования разрешенных энергий электрона при уменьшении расстояния между ямами. Мы зарисовали результаты для четырех самых низких энергетических уровней на рис. 8.4. Каждая из четырех линий соответствует одному из четырех нижних энергетических уровней, и рядом с ними мы начертили соответствующие волновые функции. Правый край рисунка показывает волновые функции при большом расстоянии между ямами (см. также рис. 8.1). Как мы и ожидали, разница между энергетическими уровнями электронов в каждом колодце почти не ощутима. Однако когда ямы сходятся, энергетические уровни начинают отдаляться друг от друга (сравните волновые функции слева с изображенными на рис. 8.3). Интересно, что энергетический уровень, соответствующий антисимметричной волновой функции, растет, а соответствующий симметричной – уменьшается.
Рис. 8.4. Вариант разрешенных энергий электрона при изменении расстояния между ямами
Это имеет глубокие последствия для реальной системы из двух протонов и двух электронов – то есть двух атомов водорода. Помните, что в реальности два электрона могут находиться на одном энергетическом уровне, если имеют противоположные спины. Это значит, что они оба могут поместиться на самом низком (симметричном) энергетическом уровне, а самое главное – что этот уровень теряет энергию, когда атомы сходятся. Следовательно, для двух удаленных атомов сближение будет энергетически благоприятно. Именно так и происходит в природе[38]: симметричная волновая функция описывает систему, в которой электроны распределены между двумя протонами более ровно, чем можно было бы ожидать от «отдаленной» волновой функции, и, поскольку эта «распределяющая» конфигурация обладает низкой энергией, атомы притягиваются друг к другу. Это притяжение в какой‑то момент прекращается, поскольку оба протона заряжены положительно и как таковые не могут не отталкиваться (и из‑за равных зарядов электронов в том числе), но это отталкивание превосходит межатомное притяжение лишь на расстояниях меньше 0,1 нм (при комнатной температуре).
В результате пара атомов водорода в состоянии покоя окажется вместе. У этой пары связанных атомов водорода есть свое название: это молекула водорода.
Прикрепление двух атомов друг к другу посредством обмена электронами носит название ковалентной связи.
Вернемся к верхней волновой функции на рис. 8.3: примерно так выглядит ковалентная связь в молекуле водорода. Помните, что высота волны соответствует вероятности нахождения электрона в конкретной точке[39]. Над каждой ямой, то есть вокруг каждого протона, наблюдается пик, и это сообщает нам, что каждый электрон все еще более вероятно найти вблизи одного или другого протона. Но при этом существует и значительная вероятность того, что электроны будут располагаться и между протонами.
Химики говорят, что при ковалентной связи атомы «делят друг с другом» электроны, и это мы здесь и наблюдаем – даже в нашей модели с двумя ямами. Помимо молекулы водорода, тенденцию атомов делиться электронами мы видели, говоря о химических реакциях.
Этот вывод нас полностью удовлетворяет. Мы выяснили, что для атомов водорода, расположенных очень далеко друг от друга, тонкие различия между двумя самыми низкими энергетическими состояниями имеют лишь академический интерес, хотя они и навели нас на мысль о том, что каждый электрон во Вселенной знает обо всех остальных ее электронах. И эта мысль просто завораживает. С другой стороны, два состояния начинают все дальше расходиться, когда протоны сходятся, и более низкое состояние начинает со временем описывать уже молекулу водорода. Теперь в дело включается не просто академический интерес, потому что ковалентная связь – причина того, что вы не просто множество атомов, размазанных в бесформенную кучу.
Продолжим эту интеллектуальную линию и подумаем, что происходит, когда вместе собирается более двух атомов. Три больше двух, так что начнем с рассмотрения трехъямного потенциала, показанного на рис. 8.5. Как обычно, нужно представить, что каждое углубление – это атом. Здесь должно быть три самых низких энергетических состояния, но при взгляде на рисунок легко решить, что на каждое состояние одиночного колодца приходится по четыре. Те четыре состояния, которые мы имеем в виду, показаны на рисунке и соотносятся с волновыми функциями, которые либо симметричны, либо антисимметричны по отношению к центру двух потенциальных барьеров[40]. Этот подсчет не может быть верным, потому что иначе получилось бы, что в этих четырех состояниях могли бы находиться четыре одинаковых фермиона, нарушая тем самым принцип Паули. Чтобы принцип Паули соблюдался, энергетических состояний должно быть только три – и их, разумеется, именно столько.
Рис. 8.5. Тройная яма, моделирующая ряд из трех атомов, и возможные волновые функции с самой низкой энергией. Внизу показано, как из трех остальных волн можно получить нижнюю
Чтобы убедиться в этом, нужно отметить, что мы всегда можем записать одну из четырех волновых функций на этом рисунке как сочетание трех других. В нижней части рисунка показано, как это работает в данном случае; мы продемонстрировали, как получить последнюю волновую функцию путем сложения и вычитания трех остальных.
Определив три самых низких энергетических состояния для частицы, находящейся в трехъямном потенциале, можем задаться вопросом, как в данном случае будет выглядеть рис. 8.4, и не удивляться, что выглядеть его аналог будет очень похоже – только пара разрешенных энергетических состояний превратится в трио.
Но хватит о трех атомах – мы сразу же переносим внимание на цепочку из множества атомов. Это особенно интересно, потому что именно здесь содержатся ключевые идеи, которые позволят многое понять о происходящем внутри твердых тел. Если существует N ям (при моделировании цепи из N атомов), то для каждой разрешенной энергии в одиночной яме будет N энергий. Если N будет равняться чему‑то вроде 1023, что типично для количества атомов в небольшом куске твердого материала, то происходит огромное количество слияний. В результате рис. 8.4 будет в этом случае выглядеть примерно как рис. 8.6. Вертикальная пунктирная линия показывает, что у атомов, отделенных соответствующим расстоянием, электроны могут иметь лишь определенные разрешенные энергии. Это никак не может вызвать удивления (а если все еще удивляет, лучше начать читать эту книгу заново), но интересно, что разрешенные энергии идут «полосами». Например, разрешены энергии от А до В , но затем не разрешено ничего вплоть до С , после чего разрешены энергии от С до D и т. д. То, что в цепь объединено много атомов, значит, что в каждой полосе существует очень много разрешенных энергий. Собственно, их так много, что можно предположить: в типичном твердом теле разрешенные энергии образуют континуум в каждой полосе. Эта черта нашей модели сохраняется и в реальном твердом теле: электроны действительно обладают энергиями, сгруппированными в подобные полосы, и это обусловливает важные особенности твердых тел. В частности, эти полосы объясняют, почему некоторые материалы (металлы) проводят электричество, а другие (изоляторы) не проводят.
Рис. 8.6. Энергетические полосы в твердом теле и их варьирование на расстоянии между атомами
Почему так? Начнем с анализа цепи атомов (как обычно, моделируемой как цепь потенциальных ям), но предположим на сей раз, что в каждом атоме несколько электронов. Разумеется, это нормальное явление – только у водорода всего один электрон связан с одним протоном, так что мы переходим от обсуждения цепочки атомов водорода к более интересному случаю цепочки атомов потяжелее. Нужно вспомнить также о том, что существует два типа электронов – со спином вверх и со спином вниз, а принцип Паули гласит, что мы можем поместить на каждый разрешенный энергетический уровень не более двух электронов. Отсюда следует, что для цепи атомов, каждый из которых содержит всего один электрон (то есть это атомы водорода), энергетическая полоса n = 1 заполнена наполовину. Это показано на рис. 8.7, где мы изобразили энергетические уровни для цепи из пяти атомов. Это значит, что каждая полоса содержит пять отчетливо выделяемых разрешенных энергий. Эти пять энергетических состояний могут принять максимум десять электронов, но нам стоит беспокоиться лишь о пяти, так как в конфигурации с самой низкой энергией цепь атомов содержит пять электронов, занимающих нижнюю половину энергетической полосы n = 1. Если бы у нас в цепи было 100 атомов, то полоса n = 1 могла бы содержать 200 электронов, но в случае с водородом будет только 100 электронов, так что полоса n = 1 в конфигурации с самой низкой энергией вновь заполнится наполовину. Рис. 8.7 показывает также, что происходит в том случае, когда на атом приходится два электрона (гелий) или три (литий). В случае с гелием конфигурация с самой низкой энергией соответствует заполненной полосе n = 1, а в случае с литием – заполненной полосе n = 1 и наполовину заполненной полосе n = 2. Должно быть понятно, что такая схема полного и половинного заполнения будет продолжаться, так что атомы с четным числом электронов всегда будут иметь заполненные полосы, а атомы с нечетным – наполовину заполненные полосы. Степень заполнения полосы, как мы очень скоро выясним, и служит причиной того, почему некоторые материалы оказываются проводниками, а другие – изоляторами.
Рис. 8.7. Расположение электронов в самых низких доступных энергетических состояниях в цепочке из пяти атомов, где каждый атом содержит 1, 2 или 3 электрона. Черные точки обозначают электроны
Сейчас представим, что мы подсоединяем концы атомной цепочки к клеммам батареи. По опыту известно, что, если речь идет об атомах металла, электрический ток будет проводиться. Но что это значит и как это объясняется тем, что мы уже знаем?
Точное действие батареи на атомы внутри провода, к счастью, понимать не надо. Все, что нужно знать, – это что подсоединение к батарее дает источник энергии, способный подтолкнуть электрон, причем всегда в одном и том же направлении. Почему батарея ведет себя именно так? Хороший вопрос. Дело в том, что она создает внутри провода электрическое поле, которое и подталкивает электроны. Это не самое удовлетворительное объяснение, но в пределах книги оно нас вполне устроит. В конце концов, мы могли бы обратиться к законам квантовой электродинамики и попытаться объяснить это явление через взаимодействие электронов с фотонами. Но при этом к разговору, который мы ведем сейчас, не добавилось бы ровным счетом ничего, так что в интересах краткости мы этого не сделаем.
Представьте электрон, находящийся в одном из состояний с определенной энергией. Начнем с предположения, что действие батареи лишь незначительно подталкивает электроны. Если электрон находится в состоянии низкой энергии и многие другие электроны стоят выше его на энергетической лестнице (используя этот образ, мы держим в уме рис. 8.7), он не сможет получить энергетический толчок от батареи. Его заблокируют, потому что более высокие энергетические состояния уже заполнены. Например, батарея способна вытолкнуть электрон на энергетическое состояние несколькими ступеньками выше, но, если все доступные ступеньки уже заняты, наш электрон должен отказаться от получения дополнительной энергии, поскольку двигаться просто некуда. Помните, что принцип Паули говорит о том, что, если все места заняты, дополнительные электроны не смогут попасть выше. Электрон вынужден вести себя так же, как если бы никакой батареи просто не существовало. Иная ситуация с электронами, имеющими самые высокие энергии. Они находятся близко к верху и могут в принципе впитать небольшой энергетический толчок от батареи и перейти на более высокое состояние – но только если не располагаются на самом верху уже заполненной полосы. Вернувшись к рис. 8.7, увидим, что электроны с самой высокой энергией смогут впитать энергию от батареи, если атомы в цепи содержат нечетное число электронов. Если это число четное, то верхние электроны все равно не смогут никуда сдвинуться, потому что в энергетической лестнице наблюдается большой разрыв, преодолеваемый только с помощью очень сильного толчка.
Отсюда следует, что если атомы твердого тела содержат четное число электронов, то эти электроны могут вести себя так же, как если бы к ним не подключали никакой батареи. Ток просто не потечет, потому что электроны не смогут впитать энергию. Это описание изолятора. Единственное исключение – если разрыв между верхней частью самой высокой заполненной энергетической полосы и нижней частью следующей пустой полосы достаточно невелик, и очень скоро нам придется рассмотреть этот случай более подробно. Напротив, если атомы содержат четное число электронов, то верхние электроны всегда будут способны впитывать энергетический толчок батареи. В результате они перескакивают на более высокий энергетический уровень, и, поскольку толчок всегда происходит в одном и том же направлении, в итоге вызывается движение этих мобильных электронов, которое мы и определяем как электрический ток. Очень упрощенно мы можем, таким образом, сделать вывод: если твердое тело состоит из атомов, содержащих нечетное число электронов, оно должно стать электрическим проводником.
К счастью, реальный мир не настолько прост. Так, алмаз – кристаллическое твердое тело, полностью состоящее из атомов углерода, которые содержат шесть электронов, – оказывается изолятором. Графит же, тоже полностью состоящий из углерода, – проводник. Более того, на деле выходит, что правило четного и нечетного числа электронов редко работает. Просто наша модель линий из ям слишком рудиментарна. А вот что совершенно верно, так это то, что хорошие проводники электричества характеризуются возможностью электронов с самой высокой энергией перескакивать в состояния с более высокой энергией, в то время как свойства изоляторов обусловлены тем, что доступ их самых верхних электронов на более высокий уровень блокируется разрывом в лестнице разрешенных энергий.
История эта обретает новый поворот, и именно он объяснит нам в следующей главе, как полупроводники проводят ток. Представьте себе электрон, который может свободно двигаться по незаполненной полосе идеального кристалла. Мы выбрали кристалл, чтобы установить, что химические связи (возможно, ковалентные) способствуют регулярной организации атомов.
Наша одномерная модель твердого тела соответствует кристаллу, если все ямы равноудалены друг от друга и имеют одинаковый размер. Подсоедините батарею – и электрон с радостью перепрыгнет с одного уровня на другой после того, как его слегка подтолкнет приложенное электрическое поле. В результате электрический ток будет постоянно расти, поскольку электроны будут впитывать все больше энергии и двигаться все быстрее и быстрее. Для каждого, кто хоть как‑то знаком с электричеством, это утверждение должно звучать странно, потому что никакого закона Ома не наблюдается (напомним: ток I зависит от приложенного напряжения U согласно формуле U = I × R , где R – сопротивление цепи). Закон Ома возникает, потому что электроны, перескакивая вверх по энергетической лестнице, могут терять энергию и возвращаться в прежнее состояние; это может произойти, только если атомная решетка не идеальна – либо из‑за примесей (то есть случайных атомов, отличающихся от большинства), либо из‑за того, что атомы совершают значительные движения, а это гарантированно происходит при любой отличающейся от нуля температуре. В результате электроны большую часть времени играют в «змеи и лестницы» на микроуровне: они взбираются по энергетической лестнице, только чтобы снова упасть в результате взаимодействий с несовершенной атомной решеткой. В среднем получается типичная энергия электрона , что ведет к постоянству тока. Эта типичная энергия электрона определяет скорость течения электронов по проводу – того, что мы называем электрическим током. Сопротивление провода – мера того, насколько несовершенна атомная решетка, через которую идут электроны.
Но это не такой уж крутой поворот. Даже без закона Ома ток не нарастал бы равномерно. Когда электроны достигают верхней части полосы, они начинают вести себя очень странно, и в результате такого поведения ток начинает уменьшаться, а со временем разворачивается в другую сторону. И это очень странно: даже несмотря на то, что электрическое поле подталкивает электроны в одном направлении, они, достигнув верха энергетической полосы, текут вспять. Объяснение этого удивительного эффекта лежит за пределами нашей книги, а пока достаточно сказать, что ключевую роль здесь играют положительно заряженные ядра: они так толкают электроны, что те меняют направление.
Итак, как и было заявлено ранее, мы рассмотрим, что происходит, когда потенциальный изолятор ведет себя как проводник, потому что разрыв между последней заполненной полосой и следующей, пустой полосой «достаточно мал». На этой стадии стоит познакомиться с научным жаргоном. Последняя (то есть самая высокая) энергетическая полоса, заполненная электронами без свободных мест, называется валентной зоной , а следующая полоса (в нашем анализе – пустая или наполовину заполненная) – зоной проводимости . Если валентная зона и зона проводимости перекрываются (а это вполне возможно), то никакого разрыва не наблюдается и потенциальный изолятор начинает вести себя как проводник. А что если разрыв есть, но при этом он «достаточно мал»? Мы указали, что электроны могут получать энергию от батареи, так что можно предположить: если батарея достаточно мощная, она может дать довольно мощный толчок для перехода электрона вблизи от верха валентной зоны в зону проводимости. Это возможно, но мы не будем рассматривать такие случаи, потому что обычные батареи не способны создать достаточно мощный энергетический толчок. Добавим цифр: электрическое поле в твердом теле обычно имеет порядок нескольких вольт на метр, а нам, чтобы подтолкнуть электрон к скачку на электронвольт[41]из валентной зоны к зоне проводимости в типичном изоляторе, понадобятся поля нескольких вольт на нанометр (то есть в миллиард раз сильнее). Значительно больше нас интересует толчок, который электрон может получить от атомов, составляющих твердое тело. Они не сидят неподвижно на одном и том же месте, немного раскачиваются, и чем горячее твердое тело, тем сильнее они раскачиваются. Качающийся атом может сообщить электрону гораздо больше энергии, чем обычная батарея – достаточно, чтобы энергия атома подскочила на несколько электронвольт. При комнатной температуре, впрочем, электрон довольно редко получает подобный толчок, поскольку при 20 ℃ тепловая энергия составляет примерно 1/40 электронвольт. Но это лишь средний показатель, а в твердом теле очень много атомов, поэтому такое периодически случается. В этом случае электроны могут бежать из тюрьмы зоны валентности и перейти в зону проводимости, где впитать легкие энергетические толчки от батареи и вызвать электрический ток.
Материалы, в которых при комнатной температуре достаточное количество электронов можно перевести из валентной зоны в зону проводимости, имеют собственное название: это полупроводники .
При комнатной температуре они могут проводить электрический ток, но, когда они охлаждаются и их атомы раскачиваются меньше, способность проводить электричество снижается, и они снова превращаются в изоляторы. Два классических примера полупроводников – кремний и германий, и благодаря своей двойственной натуре они могут использоваться с большой выгодой. На самом деле не будет преувеличением сказать, что технологическое применение полупроводниковых материалов произвело в мире революцию.
Современный мир
В 1947 году был создан первый в мире транзистор. В наши дни ежегодно производится более 10 000 000 000 000 000 000 транзисторов, что во 100 раз больше, чем число рисовых зерен, поглощаемых ежегодно семью миллиардами жителей Земли. Первый в мире транзисторный компьютер был собран в 1953 году в Манчестере и содержал 92 транзистора. Сегодня можно купить более 100 000 транзисторов по цене рисового зернышка, а в вашем мобильном телефоне их около миллиарда. В этой главе мы опишем работу транзистора, которую, безусловно, можно считать самым важным приложением квантовой теории.
Как мы уже видели в предыдущей главе, проводник потому и проводник, что некоторые электроны располагаются в зоне проводимости. По этой причине они довольно мобильны и могут «перетекать» по проводу, когда подсоединяется батарея. Уместна аналогия с текущей водой; батарея заставляет ток течь. Для иллюстрации идеи можно воспользоваться даже концепцией «потенциала»: батарея создает потенциал, внутри которого движутся электроны зоны проводимости, и потенциал в каком‑то смысле создает «склон». По этому склону в зоне проводимости материала электрон «скатывается», обретая при движении энергию. Это другой способ представления небольших толчков, о которых мы говорили в прошлой главе, при котором не батарея толкает электрон с ускорением по проводу, а образуется что‑то вроде падения воды с холма. Это хороший вариант визуализации проводимости электричества электронами, им мы и будем пользоваться до конца этой главы. В полупроводниках, таких как кремний, происходит нечто очень интересное: ток переносится не только электронами в зоне проводимости. Электроны в валентной зоне тоже вносят свой вклад. Посмотрите на рис. 9.1. Стрелка показывает, как электрон, изначально инертно покоящийся в зоне валентности, поглощает некоторое количество энергии и переходит в зону проводимости.
Рис. 9.1. Пара электрон‑дырка в полупроводнике
Конечно, после этого электрон становится гораздо более мобильным, но мобильность обретает и еще кое‑что: в зоне валентности образуется дырка, и она дает возможность маневра электронам из зоны валентности, до того столь же инертным. Как мы могли видеть, подсоединение батареи к этому полупроводнику заставит электрон из зоны проводимости совершить энергетический скачок, вызвав тем самым движение электрического тока. Что случится с этой дыркой? Электрическое поле, созданное батареей, может заставить электрон, находящийся в валентной зоне в каком‑то более низком энергетическом состоянии, перепрыгнуть в эту свободную дырку. Теперь дырка заполнена, но появляется дырка «глубже» – на более низком энергетическом уровне в валентной зоне. Когда электроны в валентной зоне перескакивают в свободную дырку, та вращается. Вместо того чтобы отслеживать движение всех электронов в почти заполненной валентной зоне, мы можем отслеживать местоположение дырки, забыв об электронах. Такой оптимизацией подсчета привычно пользуются специалисты по физике полупроводников. Нам она тоже облегчит жизнь.
Приложенное электрическое поле приводит в движение электроны зоны проводимости, создавая ток, и нам хотелось бы знать, что происходит в этом случае с дырками в валентной зоне. Мы знаем, что электроны валентной зоны не могут двигаться, поскольку их почти полностью сдерживает принцип Паули, но под действием электрического поля они чуть сдвигаются, и дырка двигается наряду с ними. Наверное, это противоречит интуиции, так что, если вы не можете смириться с тем, что когда электроны в валентной зоне смещаются влево, то и дырка тоже смещается влево, рассмотрите следующую аналогию. Представьте обычную очередь. Расстояние между людьми составляет 1 метр, но где‑то в середине очереди одного человека не хватает. Эти люди – аналог электронов, а отсутствующий человек – аналог дырки. Теперь вообразите, что все эти люди продвинулись на метр вперед, так что каждый из них оказался там, где до него стоял идущий перед ним в очереди. Очевидно, что брешь в очереди тоже продвигается на метр. Так ведут себя и дырки. Кроме этого, можно представить, как вода течет по трубе: пузырек воды будет двигаться в том же направлении, что и струя, и эта «отсутствующая вода» соответствует дырке в валентной зоне.