Кабельные термоэлектрические преобразователи

В настоящее время широкое распространение в мире, в т.ч. и в России, получили термопарные кабели, представляющие собой пару термоэлектродов помещенную внутрь металлической трубки и изолированную от нее уплотненным плавленым порошком MgO-периклазом.

В России выпускают термопарный кабель двух типов КТМС-ХА и КТМС-ХК диаметров от 1 до 7.2 мм по ТУ 16-505.757-75. Оболочка кабеля изготовлена из нержавеющей стали или жаростойкой стали или сплава. Общий вид кабельной термопары представлен на рис. 21.6 - 21.7. Термоэлектроды термопары со стороны рабочего торца сварены между собой лазерной сваркой, образуя рабочий спай внутри стальной оболочки термопарного кабеля. Рабочий торец заглушен приваренной стальной пробкой.

Свободные концы термоэлектродов подключаются к клеммам головки термопреобразователя или компенсационным проводам.

Применение кабельных термопреобразователей позволяет достичь существенных преимуществ по сравнению с термопарами традиционного исполнения, таких как:

- повышенные в 2-3 раза термоэлектрическая стабильность и рабочий ресурс при сравнимых рабочих условиях;

- возможность изгибать, укладывать в труднодоступные места, в кабельные каналы, приваривать, припаивать или просто прижимать к поверхности для измерения ее температуры, при этом монтажная длина может достигать 60-100 метров;

- малый показатель тепловой инерции, позволяющий применять их при регистрации быстропротекающих процессов;

- блочно-модульное исполнение термопреобразователей в защитных чехлах, обеспечивающее дополнительную защиту термоэлектродов от воздействия рабочей среды и возможность оперативной замены чувствительного элемента;

- универсальность применения в различных условиях эксплуатации, хорошая технологичность, малая материалоемкость.

Сравнительные испытания термопар показали, что дрейф термо-э.д.с. кабельной термопары КТХА наружным диаметром 3 мм (диаметр термоэлектродов 0.65 мм) при температуре 800 С за 10000 часов составляет примерно 100 мкВ, тогда как у обычной термопары ТХА с термоэлектродами диаметром 3.2 мм дрейф достигает 120 мкВ, а при диаметре электродов 0.7 мм он превышает 200-250 мкВ при тех же условиях. Дрейф термоЭДС кабельных термопар в оболочке из высоконикелевых сплавов при 980 С также вдвое меньше, чем дрейф показаний обычной термопары при той же температуре за 5000 ч. Дрейф проволочной термопары ТХА с электродами диаметром 3.2 мм достигает 300 мкВ за 800 ч при температуре 1077 С, а при 1200 С - за 300 ч. Повышенная стабильность кабельных термопар объясняется затруднением окисления термоэлектродов из-за ограниченного количества кислорода внутри кабеля, а также дополнительной защитой термоэлектродов от воздействия рабочей среды с помощью металлической оболочки и оксида магния.

Кабельные термоэлектрические преобразователи - student2.ru

Рис. 21.6. Заготовка из термопарного кабеля.

Кабельные термоэлектрические преобразователи - student2.ru

Рис. 21.7. Общий вид кабельной термопары.

При работе в потоках жидкости или газа, двигающихся с большой скоростью, а также при высоких давлениях и температурах, в агрессивных средах, кабельные термопреобразователи помещаются в защитные чехлы (гильзы), предохраняющие их от изгибов и разрушений, и служат в качестве сменных чувствительных элементов. Защитные чехлы имеют типовые габаритные размеры. Внешний вид преобразователя аналогичен традиционному внешнему виду промышленных термопар (рис. 21.8).

Кабельные термоэлектрические преобразователи - student2.ru

Рис. 21.8. Кабельный термопреобразователь блочно-модульного типа.

При этом термопреобразователи блочно-модульного исполнения, сохраняя все преимущества кабельных, приобретают такие достоинства, как:

- возможность оперативной замены чувствительного элемента без демонтажа защитного чехла с объекта;

- возможность одновременной поверки большого числа преобразователей вследствие малогабаритности демонтируемых кабельных чувствительных элементов;

- удешевление последующих поставок, так как, при необходимости, заменять можно только наружный чехол или только чувствительный элемент.

Чехлы для термопреобразователей высокотемпературного исполнения для работы при температурах до 1100 С изготавливаются из жаростойких сталей и сплавов. Рабочий ресурс высокотемпературных кабельных термопреобразователей блочно-модульного исполнения также превосходит ресурс термопреобразователей с проволочным чувствительным элементом, хотя диаметр термоэлектродов в кабеле не превышает 1 мм, тогда как проволочные термоэлектроды высокотемпературного исполнения обычно имеют диаметр 3.2 мм.

Кабельные термопреобразователи в жаростойких защитных чехлах из сплава ХН78Т, установленные на кауперах (воздухоподогревателях) доменной печи ОАО “Чусовской металлургический завод”, безотказно работали в течение 14 месяцев (циклическое изменение температуры воздуха в каупере 800-1150 С), в то время как ресурс проволочных (3.2 мм) термопар в чехлах из стали 15Х25Т не превышал 6-8 месяцев.

Определяющим фактором для обеспечения рабочего ресурса кабельного термопреобразователя блочно-модульного исполнения является полная герметичность и высокая жаростойкость защитного чехла. В этом случае имеющийся внутри чехла кислород “выгорает” в течение первых часов эксплуатации, далее кабельный чувствительный элемент работает в газовой среде, близкой к инертной, что резко тормозит процесс диффузии кислорода через оболочку кабеля к термоэлектродам. Термоэлектроды в этом случае защищены от воздействия рабочей среды двойной оболочкой - кабеля и защитного чехла.

По этому пути производства термопреобразователей пошли ведущие мировые производители: ABB Automation Products (ФРГ), JUMO (ФРГ), Auxitroll (Франция), OMEGA Engineering (США), ARi Industries (США), OKAZAKI Manufacturing (Япония) и др.

К сожалению, десятилетие известных экономических трудностей задержали развитие термоэлектрической термометрии в России. Мы отстаем в производстве современных и высокоточных термоэлектродных материалов, в обеспечении термоэлектрических термометров надежными защитными материалами, свернуты многие работы по термометрии. Но начавшийся рост промышленного производства позволяет надеяться, что потребности промышленности в повышении точности контроля технологических процессов, заметный рост конкуренции на рынке средств измерений приведут не только к количественному росту, но и к качественно другим конструкциям первичных датчиков, отвечающим современным метрологическим требованиям, а также потребуют новых решений в области термоэлектрической термометрии.

Оптические пирометры

Измерение высоких температур путем непосредственного соприкосновения измеряемой среды с термометром (контактным путем) часто практически неосуществимо. Нередко при измерениях относительно невысоких температур контактный путь измерения также нежелателен из-за больших трудно определимых систематических погрешностей или невозможен по технологическим или конструктивным соображениям (например, при измерениях температуры поверхностей вращающихся тел). Во всех этих случаях можно измерять температуру тел по их излучению бесконтактным путем. Для этого применяют пирометры-термометры, действие которых основано на использовании теплового излучения нагретых тел.

Возможность измерения температуры тел по их излучению была известна давно. Широко применялся прежде метод визуальных измерений температуры тел по цветам каления. При нагревании, начиная примерно с температур 550 С, тела постепенно меняют свой цвет от темно-красного до ослепительно белого. Цвета каления являются результирующим ощущением, вызванным всем комплексом лучей участка видимого излучения. Такой метод измерения весьма субъективен и может дать хорошие результаты лишь при большом опыте наблюдений за нагреванием изделий из одного и того же однородного материала. В настоящее время этот метод измерения применяется очень редко.

Измерение температуры тел по их излучению можно проводите различными методами. Чаще всего пользуются следующими тремя методами:

- яркостным - по спектральной интенсивности излучения телом лучей определенной длины волны (фотометрическим измерением яркости тела в монохроматическом свете) - по величине J (или B);

- радиационным - по плотности интегрального излучения (по излучательной способности) тела - по величине E;

- цветовым - по отношению спектральной интенсивности, излучения телом лучей двух определенных длин волн - по отношению J1/J2.

Яркостный метод измерения, ограниченный только видимой областью спектра, называют также оптическим.

Так как тепловое излучение различных реальных тел при одинаковой температуре получается неодинаковым, то приходится все измерительные устройства градуировать на температуру, соответствующую излучению абсолютно черного тела. Для определения температур реальных тел приходится в показания измерительных устройств вводить поправки, иногда весьма большие.

Наши рекомендации