Различают следующие виды поляризации.

24)

Принцип суперпозиции полей:

Если в данной точке пространства различные электрически заряженные частицы 1, 2, 3... и т.д. создают электрические поля с напряженностью Е1, Е2, Е3 ... и т.д., то результирующая напряженность в данной точке поля равна геометрической сумме напряженностей.

25) Фо́рмула Острогра́дского — математическая формула, которая выражает поток векторного поля через замкнутую поверхность интегралом от дивергенции этого поля по объёму, ограниченному этой поверхностью:

то есть интеграл от дивергенции векторного поля , распространённый по некоторому объёму , равен потоку вектора через поверхность , ограничивающую данный объём.

Формула применяется для преобразования объёмного интеграла в интеграл по замкнутой поверхности.

Циркуляция вектора Е - Циркуляцией вектора напряженности называется работа, которую совершают электрические силы при перемещении единичного положительного заряда по замкнутому пути L.

Так как работа сил электростатического поля по замкнутому контуру равна нулю (работа сил потенциального поля), следовательно циркуляция напряженности электростатического поля по замкнутому контуру равна нулю.

26) Электростатический потенциал — скалярная энергетическая характеристика электростатического поля, характеризующая потенциальную энергию поля, которой обладает единичный заряд, помещённый в данную точку поля. Единицей измерения потенциала является, таким образом, единица измерения работы, деленная на единицу измерения заряда.

Электростатический потенциал равен отношению потенциальной энергии взаимодействия заряда с полем к величине этого заряда. Напряжённость электростатического поля и потенциал связаны соотношением:

Здесь ' align=middle v:shapes="_x0000_i1036"> — оператор Гамильтона, или набла, то есть в правой части равенства стоит вектор с компонентами, равными частным производным от потенциала по соответствующим координатам, взятый с противоположным знаком.

27) Точечный электрический диполь - система 2-х одинаковых по величине, но разных по знаку, точечных зарядов, расстояние l между которыми значительно меньше расстояния до точки, где определяется поле системы. Вектор l проводится от отрицательного заряда к положительному заряду. Так же направлен электрический дипольный момент, который определяется: P=QL

Диполь во внешнем эл.поле

Полная сила, действующая на диполь, очевидно, равна нулю, из-за того, что силы, действующие на каждый из зарядов, различны по знаку, но одинаковы по модулю:

F  F1 F2 0 (везде вектора)

Поэтому диполь в однородном поле не смещается. Однако на диполь действует пара сил на расстоянии (плечо пары сил) l sin  , где угол  - угол между направлением вектора напряженности поля и дипольным моментом. Следовательно, момент силы, стремящийся повернуть дипольный момент вдоль направления поля, отличен от нуля:

M  [p E]

28) Вещество или материальное тело, в котором имеются заряды, способные переносить электрический ток, называется проводником. В металлах переносчиками тока служат свободные (т.е. не привязанные к атомам) электроны, в электролитах — ионы, в плазме — и электроны, и ионы.

Электроемкостью системы из двух проводников называется физическая величина, определяемая как отношение заряда q одного из проводников к разности потенциалов Δφ между ними:

В системе СИ единица электроемкости называется фарад (Ф):

Существуют такие конфигурации проводников, при которых электрическое поле оказывается сосредоточенным (локализованным) лишь в некоторой области пространства. Такие системы называются конденсаторами, а проводники, составляющие конденсатор, – обкладками.

Простейший конденсатор – система из двух плоских проводящих пластин, расположенных параллельно друг другу на малом по сравнению с размерами пластин расстоянии и разделенных слоем диэлектрика. Такой конденсатор называется плоским.

Сферический конденсатор – это система из двух концентрических проводящих сфер радиусов R1 и R2. Цилиндрический конденсатор – система из двух соосных проводящих цилиндров радиусов R1 и R2 и длины L.

29) Диэлектрики – вещества, обладающие малой электропроводностью, т.к. у них очень мало свободных заряженных частиц – электронов и ионов. Эти частицы появляются в диэлектриках только при нагреве до высоких температур. Существуют диэлектрики газообразные (газы, воздух), жидкие (масла, жидкие органические вещества) и твердые (парафин, полиэтилен, слюда, керамика и т.п.).

Различают следующие виды поляризации.

1) Электронная поляризация:При подаче напряжения в диэлектрике создается электрическое поле, и электроны в атомах смещаются относительно ядра к положительному электроду.

2) Ионная поляризация (или поляризация ионного смещения).

3) Дипольная релаксационная поляризация (ориентационная): Поляризация определяется поворотом и ориентацией диполей в направлении поля и связана с тепловым движением частиц.

4) Электронно – релаксационная поляризация: Поляризация возникает за счет возбужденных тепловой энергией избыточных «дефектных» электронов или дырок. Характерна для диэлектриков с высоким показателем преломления и электронной электропроводностью, а также полупроводников.

5) Упруго – дипольная поляризация: Поляризация наблюдается у дипольных молекул некоторых кристаллов, закрепленных и только ограниченно поворачивающихся на небольшой угол.

6) Междуслойная поляризация: Поляризация обусловлена проводящими и полупроводящими включениями и наличием слоев с различной проводимостью. Поляризация проявляется в твердых телах неоднородной структуры (слоистые пластики) в области низких частот, и связана со значительными потерями электрической энергии.

7) Самопроизвольная (спонтанная) поляризация: Поляризация характерна для сегнетоэлектриков, веществ, разбивающихся на области (домены), обладающие спонтанным дипольным моментом в отсутствие внешнего поля.

8) Остаточная поляризация: Поляризация существует длительное время в диэлектрике после снятия напряжения. Этот тип поляризации наблюдается в электретах. Обладает сильной зависимостью от напряженности электрического поля и температуры.

30) Энергия системы неподвижных точечных зарядов. Электростатические силы взаимодействия консервативны; следовательно, система зарядов обладает потенциальной энергией. Найдем потенциальную энергию системы двух неподвижных точечных зарядов Q1 и Q2, находящихся на расстоянии r друг от друга. Каждый из этих зарядов в поле другого обладает потенциальной энергией:

где j12 и j21 — соответственно потенциалы, создаваемые зарядом Q2 в точке нахождения заряда Q1 и зарядом Q1 в точке нахождения заряда Q2.

Энергия заряженного проводника — Поверхность проводника является эквипотенциальной. Поэтому потенциалы тех точек, в которых находятся точечные заряды , одинаковы и равны потенциалу проводника.

— Энергия заряженного проводника, — Потенциал проводника, — Точечный заряд

Энергия конденсатора обусловлена тем, что электрическое поле между его обкладками обладает энергией. Напряженность Е поля пропорциональна напряжению U, поэтому энергия электрического поля пропорциональна квадрату его напряженности.

Энергия электростатического поля - это энергия системы неподвижных точечных зарядов, энергия уединенного заряженного проводника и энергия заряженного конденсатора.

Если имеется система двух заряженных проводников (конденсатор), то полная энергия системы равна сумме собственных потенциальных энергий проводников и энергии их взаимодействия:

31) Электри́ческий ток — упорядоченное движение свободных электрически заряженных частиц под воздействием электрического поля.

Пло́тность то́ка — векторная физическая величина, имеющая смысл силы тока, протекающего через единицу площади. Например, при равномерном распределении плотности тока и всюду ортогональности ее плоскости сечения, через которое вычисляется или измеряется ток, величина вектора плотности тока:

Сила тока - физическая величина , равная отношению количества заряда , прошедшего за некоторое время через поперечное сечение проводника, к величине этого промежутка времени.

32) Электри́ческое сопротивле́ние — физическая величина, характеризующая свойства проводника препятствовать прохождениюэлектрического тока и равная отношению напряжения на концах проводника к силе тока, протекающего по нему.

Электродвижущая сила (ЭДС) — скалярная физическая величина, характеризующая работу сторонних (непотенциальных) сил в источникахпостоянного или переменного тока. В замкнутом проводящем контуре ЭДС равна работе этих сил по перемещению единичного положительногозаряда вдоль контура.

ЭДС можно выразить через напряжённость электрического поля сторонних сил ( ). В замкнутом контуре ( ) тогда ЭДС будет равна:

, где — элемент длины контура.

Первое правило Кирхгофа (правило токов Кирхгофа) гласит, что алгебраическая сумма токов в каждом узле любой цепи равна нулю. При этом втекающий в узел ток принято считать положительным, а вытекающий — отрицательным:

Иными словами, сколько тока втекает в узел, столько из него и вытекает.

Второе правило Кирхгофа (правило напряжений Кирхгофа) гласит, что алгебраическая сумма падений напряжений на всех ветвях, принадлежащих любому замкнутому контуру цепи, равна алгебраической сумме ЭДС ветвей этого контура. Если в контуре нет источников ЭДС (идеализированных генераторов напряжения), то суммарное падение напряжений равно нулю:

- для постоянных напряжений.

- для переменных напряжений.

Иными словами, при полном обходе контура потенциал, изменяясь, возвращается к исходному значению. Правила Кирхгофа справедливы для линейных и нелинейных линеаризованных цепей при любом характере изменения во времени токов и напряжений.

Закон Ома для полной цепи:

, где — ЭДС источника напряжения(В), — сила тока в цепи (А), — сопротивление всех внешних элементов цепи (Ом), — внутреннее сопротивление источника напряжения (Ом).

Сила тока в участке цепи прямо пропорциональна напряжению и обратно пропорциональна электрическому сопротивлению данного участка цепи.

33)При протекании тока по однородному участку цепи электрическое поле совершает работу. За время Δt по цепи протекает заряд Δq = I Δt. Электрическое поле на выделенном учестке совершает работу :

ΔA = (φ1 – φ2) Δq = Δφ12 I Δt = U I Δt,

где U = Δφ12 – напряжение. Эту работу называют работой электрического тока.

Мощность электрического тока равна отношению работы тока ΔA к интервалу времени Δt, за которое эта работа была совершена:

Закон Джоуля — Ленца:Мощность тепла, выделяемого в единице объёма среды при протекании электрического тока, пропорциональна произведению плотности электрического тока на величину напряженности электрического поля:

, где — мощность выделения тепла в единице объёма, — плотность электрического тока, — напряжённость электрического поля, σ — проводимость среды.

34) Зонная теория твёрдого тела — квантовомеханическая теория движения электронов в твёрдом теле.

В соответствии с квантовой механикой свободные электроны могут иметь любую энергию — их энергетический спектр непрерывен. Электроны, принадлежащие изолированныматомам, имеют определённые дискретные значения энергии. В твёрдом теле энергетический спектр электронов существенно иной, он состоит из отдельных разрешённых энергетических зон, разделённых зонами запрещённых энергий.

Полупроводни́к — материал, который по своей удельной проводимости (т.е. способности проводить электрический ток) занимает промежуточное место между проводниками и диэлектриками и отличается от проводников сильной зависимостью удельной проводимости от концентрации примесей, температуры и воздействия различных видов излучения. Основным свойством полупроводника является увеличение электрической проводимости с ростом температуры.

Собственная проводимость

Полупроводники, в которых свободные электроны и «дырки» появляются в процессе ионизации атомов, из которых построен весь кристалл, называют полупроводниками с собственной проводимостью. В полупроводниках с собственной проводимостью концентрация свободных электронов равняется концентрации «дырок».

, где — удельное сопротивление, — подвижность электронов, — подвижность дырок, — их концентрация, q — элементарный электрический заряд (1,602·10−19 Кл).

Для собственного полупроводника концентрации носителей совпадают и формула принимает вид:

.

Примесная проводимость

Для создания полупроводниковых приборов часто используют кристаллы с примесной проводимостью. Такие кристаллы изготавливаются с помощью внесения примесей с атомами трехвалентного или пятивалентного химического элемента.

Электронные полупроводники (n-типа) - Термин «n-тип» происходит от слова «negative», обозначающего отрицательный заряд основных носителей. Этот вид полупроводников имеет примесную природу. Проводимость N-полупроводников приблизительно равна:

Дырочные полупроводники (р-типа) - Термин «p-тип» происходит от слова «positive», обозначающего положительный заряд основных носителей. Этот вид полупроводников, кроме примесной основы, характеризуется дырочной природой проводимости.

Проводимость p-полупроводников приблизительно равна:

35) Контактная разность потенциалов — это разность потенциалов, возникающая при соприкосновении двух различных проводников, имеющих одинаковую температуру.

Описание: При соприкосновении двух проводников с разными работами выхода на проводниках появляются электрические заряды. А между их свободными концами возникает разность потенциалов. Разность потенциалов между точками находящимися вне проводников, в близи их поверхности называется контактной разностью потенциалов. Так как проводники находятся при одинаковой температуре, то в отсутствие приложенного напряжения поле может существовать только в пограничных слоях (Правило Вольта). Выделяется внутренняя разность потенциалов(при соприкосновении металлов) и внешняя (в зазоре). Значение внешней контактной разности потенциалов равно разности работ выхода отнесенной к заряду электрона. Если проводники соединить в кольцо то ЭДС в кольце будет равна 0. Для разных пар металлов значение контактной разности потенциалов колеблется от десятых до единиц вольт.

Гальвани́ческий элеме́нт — химический источник электрического тока, основанный на взаимодействии двух металлов и (или) их оксидов в электролите, приводящем к возникновению в замкнутой цепи электрического тока.

Термоэлектро́нная эми́ссия (эффект Ричардсона, эффект Эдисона) — явление испускания электронов нагретыми телами. Концентрация свободных электронов в металлах достаточно высока, поэтому даже при средних температурах вследствие распределения электронов по скоростям (по энергии) некоторые электроны обладают энергией, достаточной для преодоления потенциального барьера на границе металла. С повышением температуры число электронов, кинетическая энергия теплового движения которых больше работы выхода, растет, и явление термоэлектронной эмиссии становится заметным.

Термоэлектри́ческие явле́ния — совокупность физических явлений, обусловленных взаимосвязью между тепловыми и электрическими процессами в металлах и полупроводниках.

Эффект Зеебека — явление возникновения ЭДС в замкнутой электрической цепи, состоящей из последовательно соединённых разнородных проводников, контакты между которыми находятся при различных температурах.

Эффект Пельтье — термоэлектрическое явление, при котором происходит выделение или поглощение тепла при прохождении электрического тока в месте контакта (спая) двух разнородных проводников.

Эффект Томсона — одно из термоэлектрических явлений, заключающееся в том, что в однородном неравномерно нагретом проводнике с постоянным током, дополнительно к теплоте, выделяемой в соответствии с законом Джоуля — Ленца, в объёме проводника будет выделяться или поглощаться дополнительная теплота Томсона в зависимости от направления тока. Количество теплоты Томсона пропорционально силе тока, времени и перепаду температур, зависит от направления тока.

36) Закон Био́—Савара—Лапла́са — физический закон для определения вектора индукции магнитного поля, порождаемого постояннымэлектрическим током. Закон Био—Савара—Лапласа играет в магнитостатике ту же роль, что и закон Кулона в электростатике. Закон Био—Савара—Лапласа можно считать главным законом магнитостатики, получая из него остальные ее результаты.

Пусть постоянный ток течёт по контуру (проводнику) , находящемуся в вакууме, — точка, в которой ищется (наблюдается) поле, тогда индукция магнитного поля в этой точке выражается интегралом (в Международной системе единиц (СИ))

37) Сила Лоренца— сила, с которой, в рамках классической физики, электромагнитное поле действует на точечную заряженную частицу.

Сила F действующая на частицу с электрическим зарядом q, движущуюся с постоянной скоростью v, во внешнем электрическом E и магнитномB полях, такова:

.

Зако́н Ампе́ра — закон взаимодействия электрических токов. Из закона Ампера следует, что параллельные проводники с электрическими токами, текущими в одном направлении, притягиваются, а в противоположных — отталкиваются. Законом Ампера называется также закон, определяющий силу, с которой магнитное поле действует на малый отрезок проводника с током.

Сила , с которой магнитное поле действует на элемент проводника с током, находящегося в магнитном поле, прямо пропорциональна силе тока в проводнике и векторному произведению элемента длины проводника на магнитную индукцию :

.

Пусть в однородное магнитное поле помещена рамка с током. Тогда силы Ампера, действующие на боковые стороны рамки, будут создавать вращающий момент, величина которого пропорциональна магнитной индукции, силе тока в рамке, ее площади S и зависит от угла, a между вектором и нормалью к площади : .

38) -

39) Намагни́ченность— векторная физическая величина, характеризующая магнитное состояние макроскопического физического тела. Обозначается обычно М или J. Определяется как магнитный момент единицы объёма вещества:

, Здесь, M — вектор намагниченности; m - вектор магнитного момента; V — объём.

При изучении магнитного поля в веществе различают два типа токов – макротоки и микротоки:

Макротоками называются токи проводимости и конвекционные токи, связанные с движением заряженных макроскопических тел.

Микротоками (молекулярными токами) называют токи, обусловленные движением электронов в атомах, молекулах и ионах.

Магнитное поле в веществе является суперпозицией двух полей: внешнего магнитного поля, создаваемого макротоками и внутреннего, или собственного, магнитного поля, создаваемого микротоками.

Характеризует магнитное поле в веществе вектор , равный геометрической сумме и магнитных полей:

Напряжённость магни́тного по́ля (стандартное обозначение Н) — векторная физическая величина, равная разности вектора магнитной индукции B ивектора намагниченности M.

В СИ: где — магнитная постоянная.

40) Диамагнетизм — один из видов магнетизма, который проявляется в намагничивании вещества навстречу направлению действующего на него внешнего магнитного поля. Диамагнетизм свойствен всем веществам. Диамагнетизм можно рассматривать как следствие индукционных токов, наводимых в заполненных электронных оболочках ионов внешним магнитным полем. Эти токи создают в каждом атоме индуцированный магнитный момент, направленный, согласно правилу Ленца, навстречу внешнему полю (независимо от того, имелся ли первоначально собственный момент или нет и как он был ориентирован).

Парамагнетики— вещества, которые намагничиваются во внешнем магнитном поле в направлении внешнего магнитного поля (J↑↑H) и имеют положительную магнитную восприимчивость. Парамагнетики относятся к слабомагнитным веществам, магнитная проницаемостьнезначительно отличается от единицы .

Ферромагнетики— вещества (как правило, в твёрдом кристаллическом или аморфном состоянии), в которых ниже определённой критической температуры (точки Кюри) устанавливается дальний ферромагнитный порядок магнитных моментов атомов или ионов (в неметаллических кристаллах) или моментов коллективизированных электронов (в металлических кристаллах). Иными словами, ферромагнетик — такое вещество, которое, при температуре ниже точки Кюри, способно обладать намагниченностью в отсутствие внешнего магнитного поля.

41) Электромагнитная индукция — явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него. Он обнаружил, что электродвижущая сила, возникающая в замкнутом проводящем контуре, пропорциональна скорости изменения магнитного потока через поверхность, ограниченную этим контуром. Величина электродвижущей силы (ЭДС) не зависит от того, что является причиной изменения потока — изменение самого магнитного поля или движение контура (или его части) в магнитном поле. Электрический ток, вызванный этой ЭДС, называется индукционным током.

Причиной электродвижущей силы может стать изменение магнитного поля в окружающем пространстве. Это явление называется электромагнитной индукцией. Величина ЭДС индукции в контуре определяется выражением:

, где — поток магнитного поля через замкнутую поверхность , ограниченную контуром. Знак «−» перед выражением показывает, что индукционный ток, созданный ЭДС индукции, препятствует изменению магнитного потока в контуре (см. правило Ленца).

Самоиндукция — это явление возникновения ЭДС индукции в проводящем контуре [1]при изменении протекающего через контур тока.

При изменении тока в контуре пропорционально меняется[2] и магнитный поток через поверхность, ограниченную этим контуром[3]. Изменение этого магнитного потока, в силу закона электромагнитной индукции, приводит к возбуждению в этом контуре индуктивной ЭДС.

Это явление и называется самоиндукцией. (Понятие родственно понятию взаимоиндукции, являясь как бы его частным случаем).

Направление ЭДС самоиндукции всегда оказывается таким, что при возрастании тока в цепи ЭДС самоиндукции препятствует этому возрастанию (направлена против тока), а при убывании тока — убыванию (сонаправлена с током). Этим свойством ЭДС самоиндукции сходна с силой инерции.

Величина ЭДС самоиндукции пропорциональна скорости изменения силы тока :

, Коэффициент пропорциональности называется коэффициентом самоиндукции или индуктивностью контура (катушки).

Взаимоиндукция (взаимная индукция) — возникновение электродвижущей силы (ЭДС индукции) в одном проводнике вследствие изменения силы тока в другом проводнике или вследствие изменения взаимного расположения проводников. Взаимоиндукция — частный случай более общего явления — электромагнитной индукции.

42)Приращение плотности энергии магнитного поля равно:

где: H — напряжённость магнитного поля, B — магнитная индукция

43)-

44) Вихревое электрическое поле. Ток смещения. Уравнения Максвелла.

Вихревое электрическое поле - это индуцированное электрическое поле. Переменное магнитное поле порождает наведенное (индуцированное) электрическое поле. Если магнитное поле постоянно, то индуцированного электрического поля не возникает. Следовательно, индуцированное электрическое поле не связано с зарядами, как в случае электростатического поля; его силовые линии не начинаются и не заканчиваются на зарядах, а замкнуты сами на себя, подобно силовым линиям магнитного поля.

Ток смещения или абсорбционный ток — величина, прямо пропорциональная быстроте изменения электрической индукции. Это понятие используется в классической электродинамике.

45) Электрические колебания. Колебательный контур. Свободные незатухающие электрические колебания.

Электрические колебания - электромагнитные колебания в квазистационарных цепях, размеры к-рых малы по сравнению с длиной эл--магн. волны. Это позволяет не учитывать волнового характера процессов и описывать их как колебания электрич.зарядов (в ёмкостных элементах цепи) и токов I (в индуктивных и диссипативных элементах) в соответствии с ур-нием непрерывности:

В случае одиночного колебательного контура Э. к. описываются ур-нием

где L-индуктивность, С-ёмкость, R-сопротивление, - переменная внешняя эдс.

Колебательный контур - электрич. цепь, содержащая индуктивность L, ёмкость С и сопротивление R, в к-рой могут возбуждаться электрич. колебания.

Незатухающие электрические колебания - колебания, амплитуда которых не убывает со временем, а остается постоянной. Электрические незатухающие колебания в радиотехнике создаются машинами высокой частоты, дуговыми и ламповыми генераторами. Применяются в радиотелеграфе и радиотелефоне.

46) Затухающие колебания — колебания, энергия которых уменьшается с течением времени. Бесконечно длящийся процесс вида в природе невозможен. Свободные колебания любого осциллятора рано или поздно затухают и прекращаются. Поэтому на практике обычно имеют дело с затухающими колебаниями. Они характеризуются тем, что амплитуда колебаний A является убывающей функцией. Обычно затухание происходит под действием сил сопротивления среды, наиболее часто выражаемых линейной зависимостью от скорости колебаний или её квадрата.

Свободные (или собственные) — это колебания в системе под действием внутренних сил, после того как система выведена из состояния равновесия (в реальных условиях свободные колебания всегда затухающие). Простейшими примерами свободных колебаний являются колебания груза, прикреплённого к пружине, или груза, подвешенного на нити.

Вынужденные — колебания, протекающие в системе под влиянием внешнего периодического воздействия. Примеры: листья на деревьях, поднятие и опускание руки. При вынужденных колебаниях может возникнуть явление резонанса: резкое возрастание амплитуды колебаний при совпадении собственной частоты осциллятора и частоты внешнего воздействия.

47) Электри́ческий импеда́нс (комплексное сопротивление, полное сопротивление) — комплексное сопротивление двухполюсника длягармонического сигнала.

Импедансом называется отношение комплексной амплитуды напряжения гармонического сигнала, прикладываемого к двухполюснику, к комплексной амплитуде тока, протекающего через двухполюсник. При этом импеданс не должен зависеть от времени: если время t в выражении для импеданса не сокращается, значит, для данного двухполюсника понятие импеданса неприменимо.

j — мнимая единица; — циклическая частота; , — амплитуды напряжения и тока гармонического сигнала на частоте ; , — фазы напряжения и тока гармонического сигнала на частоте ; , — Комплексные амплитуды напряжения и тока гармонического сигнала на частоте ;

Мощность цепи переменного тока - Понятие потенциала или разности потенциалов u позволяет определить работу, совершаемую электрическим полем при перемещении элементарного электрического заряда dq, как dA = udq. В то же время, электрический ток равен i = dq/dt. Отсюда dA = ui dt, следовательно, скорость совершения работы, т.е. мощность в данный момент времени или мгновенная мощность равна:

48) Электромагнитная волна - процесс распространения электромагнитного поля в пространстве.
Электромагнитная волна представляет собой процесс последовательного, взаимосвязанного изменения векторов напряжённости электрического и магнитного полей, направленных перпендикулярно лучу распространения волны, при котором изменение электрического поля вызывает изменения магнитного поля, которые, в свою очередь, вызывают изменения электрического поля.

Плотность энергии электромагнитного поля является суммой плотностей энергий электрического и магнитного полей.

В системе СИ:

В вакууме (а также в веществе при рассмотрении микрополей):

где E — напряжённость электрического поля, B — магнитная индукция, D — электрическая индукция, H — напряжённость магнитного поля, с — скорость света, —электрическая постоянная и — магнитная постоянная. Иногда для констант и — используют термины диэлектрическая проницаемость и магнитная проницаемость вакуума, — которые являются крайне неудачными, и сейчас почти не употребляются.

49)-

50) Поляриза́ция волн — характеристика поперечных волн, описывающая поведение вектора колеблющейся величины в плоскости, перпендикулярной направлению распространения волны.

В продольной волне поляризация возникнуть не может, так как направление колебаний в этом типе волн всегда совпадают с направлением распространения.

Поперечная волна характеризуется двумя направлениями: волновым вектором и вектором амплитуды, всегда перпендикулярным к волновому вектору. Так что втрёхмерном пространстве имеется ещё одна степень свободы — вращение вокруг волнового вектора.

Причинойвозникновения поляризации волн может быть:

несимметричная генерация волн в источнике возмущения;

анизотропность среды распространения волн;

преломление и отражение на границе двух сред.

Основными являются два вида поляризации:

·линейная— колебания возмущения происходят в какой-то одной плоскости. В таком случае говорят о «плоско-поляризованной волне»;

·круговая — конец вектора амплитуды описывает окружность в плоскости колебаний. В зависимости от направления вращения вектора может быть правой или левой.

На основе этих двух или только круговой можно сформировать и другие, более сложные виды поляризации. Например, эллиптическая.

Фотометрические величины - величины, характеризующие оптич. излучение или по его действию на те или иные селективные приёмники оптич. излучения - т. н. редуцированные фотометрические величины, или безотносительно к его действию на к--л. приёмники излучения, а на основе единиц энергии - т. н. энергетические фотометрические величины.

51)-

52)-

53)-

54) Интерференция света — перераспределение интенсивности света в результате наложения (суперпозиции) нескольких когерентных световых волн. Это явление сопровождается чередующимися в пространстве максимумами и минимумами интенсивности. Её распределение называется интерференционной картиной.

Когерентность - согласованное протекание во времени и пространстве нескольких колебательных или волновых процессов.

Просветле́ние о́птики — это нанесение на поверхность линз, граничащих с воздухом, тончайшей плёнки или нескольких плёнок одна поверх другой. Это необходимо для увеличения светопропускания оптической системы. Показатель преломления таких плёнок меньше показателя преломления стёкол линз.

Интерферометр— измерительный прибор, принцип действия которого основан на явлении интерференции. Принцип действия интерферометра заключается в следующем: пучок света с помощью того или иного устройства пространственно разделяется на два или большее количество когерентных пучков. Каждый из пучков проходит различные оптические пути и возвращается на экран, создавая интерференционную картину, по которой можно установить смещение фаз пучков.

Интерферометр Фабри-Перо - классический спектральный прибор высокого разрешения, теория которого может быть найдена во многих учебниках. Он представляет собой плоско-параллельную пластину толщиной d (возможно, воздушную, ограниченную зеркалами с коэффициентом отражения (по интенсивности) R и пропускания T.

55) Дифракцией светаназывается явление отклонения света от прямолинейного направления распространения при прохождении вблизи препятствий. Как показывает опыт, свет при определенных условиях может заходить в область геометрической тени. Если на пути параллельного светового пучка расположено круглое препятствие (круглый диск, шарик или круглое отверстие в непрозрачном экране), то на экране, расположенном на достаточно большом расстоянии от препятствия, появляется дифракционная картина – система чередующихся светлых и темных колец. Если препятствие имеет линейный характер (щель, нить, край экрана), то на экране возникает система параллельных дифракционных полос.

Принцип Гюйгенса — Френеля - Каждый элемент волнового фронта можно рассматривать, как центр вторичного возмущения, порождающего вторичные сферические волны, а результирующее световое поле в каждой точке пространства будет определяться интерференцией этих волн.

Дифракция Фраунгофера — случай дифракции, при котором дифракционная картина наблюдается на значительном расстоянии от отверстия или преграды.

Дифра́кция Френе́ля — дифракционная картина, которая наблюдается на небольшом расстоянии от препятствия, по условиям, когда основной вклад в интерференционную картину дают границы экрана.

56) Условие Вульфа — Брэгга определяет направление максимумов дифракции упруго рассеянного на кристалле рентгеновского излучения. Имеет вид:

где d — межплоскостное расстояние, θ — угол скольжения (брэгговский угол), n — порядок дифракционного максимума,λ — длина волны.

Рентгенострукту́рный ана́лиз (рентгенодифракционный анализ) — один из дифракционных методов исследования структуры вещества. В основе данного метода лежит явление дифракции рентгеновских лучей на трехмерной кристаллической решётке.

Метод позволяет определять атомную структуру вещества, включающую в себя пространственную группу элементарной ячейки, её размеры и форму, а также определить группу симметрии кристалла.

Диспе́рсия све́та (разложение света) — это явление, обусловленное зависимостью абсолютного показателя преломлениявещества от частоты (или длины волны) света (частотная дисперсия), или, то же самое, зависимость фазовой скорости света в веществе от длины волны (или частоты).

57) Поглощением (абсорбцией) света называется явление уменьшения энергии световой волны при ее распространении в веществе вследствие преобразования энергии волны в другие виды энергии. В результате поглощения интенсивность света при прохождении через вещество уменьшается.

Поглощение света в веществе описывается законом Бугера*:

где I0 и I — интенсивности плоской монохроматической световой волны на входе и выходе слоя поглощающего вещества толщиной х, a — коэффициентпоглощения, зависящий от длины волны света, химической природы и состояния вещества и не зависящий от интенсивности света. При х=1/a интенсивность света I по сравнению с I0 уменьшается в е раз.

Теплово́е излуче́ние или лучеиспускание — передача энергии от одних тел к другим в виде электромагнитных волн за счёт их тепловой энергии. Тепловое излучение в основном приходится на инфракрасный участок спектра, т.е на длины волн от 0,74 мкм до 1000 мкм. Отличительной особенностью лучистого теплообмена является то, что он может осуществляться между телами, находящимися не только в какой-либо среде, но и вакууме.

Характеристики:

Энергетическая светимость тела - — физическая величина, являющаяся функцией температуры и численно равная энергии, испускаемой телом в единицу времени с единицы площади поверхности по всем направлениям и по всему спектру частот.

Спектральная плотность энергетической светимости — функция частоты и температуры, характеризующая распределение энергии излучения по всему спектру частот (или длин волн).

Поглощающая способность тела — — функция частоты и температуры, показывающая, какая часть энергии электромагнитного излучения, падающего на тело, поглощается телом в области частот вблизи .

Отражающая способность тела — — функция частоты и температуры, показывающая какая часть энергии электромагнитного излучения, падающего на тело, отражается от него в области частот вблизи .

Закон Бугера - интенсивность света при прохождении через вещество убывает по экспоненциальному закону: .

Закон излучения Кирхгофа - Отношение излучательной способности любого тела к его поглощательной способности одинаково для всех тел при данной температуре для данной частоты и не зависит от их формы и химической природы.

58) Абсолютно чёрное тело — физическая идеализация, применяемая в термодинамике, тело, поглощающее всё падающее на него электромагнитное излучение во всех диапазонах и ничего не отражающее. Несмотря на название, абсолютно чёрное тело само может испускать электромагнитное излучение любой частоты и визуально иметьцвет. Спектр излучения абсолютно чёрного тела определяется только его температурой.

59) Фотоэффе́кт — это испускание электронов веществом под действием света (и, вообще говоря, любого электромагнитного излучения). В конденсированныхвеществах (твёрдых и жидких) выделяют внешний и внутренний фотоэффект.

Внешним фотоэффектом называется испускание электронов веществом под действием электромагнитного излучения. Внешний фотоэффект наблюдается в твердых телах (металлах, полупроводниках, диэлектриках), а также в газах на отдельных атомах и молекулах (фотоионизация).

Внутренний фотоэффект – это вызванные электромагнитным излучением переходы электронов внутри полупроводника или диэлектрика из связанных состояний в свободные без вылета наружу. В результате концентрация носителей тока внутри тела увеличивается, что приводит к возникновению фотопроводимости (повышению электропроводности полупроводника или диэлектрика при его освещении) или к возникновению электродвижущей силы (ЭДС).

Вентильный фотоэффект является разновидностью внутреннего фотоэффекта, – это возникновение ЭДС (фото ЭДС) при освещении контакта двух разных полупроводников или полупроводника и металла (при отсутствии внешнего электрического поля). Вентильный фотоэффект открывает пути для прямого преобразования солнечной энергии в электрическую.

Многофотонный фотоэффект возможен, если интенсивность света очень большая (например, при использовании лазерных пучков). При этом электрон, испускаемый металлом, может одновременно получить энергию не от одного, а от нескольких фотонов.

Эффект Комптона (Комптон-эффект) — явление изменения длины волны электромагнитного излучения вследствие упругого рассеивания его электронами.

При рассеянии фотона на покоящемся электроне частоты фотона и (до и после рассеяния соответственно) связаны соотношением:

где — угол рассеяния (угол между направлениями распространения фотона до и после рассеяния).

60)

61)

62) Радиоактивность - самопроизвольное (спонтанное) превращение неустойчивого изотопа химического элемента в другой изотоп (обычно - изотоп другого элемента). Сущность явления Р. состоит в самопроизвольном изменении состава атомного ядра, находящегося в основном состоянии либо в возбуждённом долгоживущем (метастабильном) состоянии.

Зако́ны сохране́ния:

Зако́н сохране́ния эне́ргии — для изолированной физической системы может быть введена скалярная физическая величина, являющаяся функцией параметров системы и называемая энергией, которая сохраняется с течением времени.

Зако́н сохране́ния и́мпульса - векторная сумма импульсов всех тел (или частиц) замкнутой системыесть величина постоянная.

Зако́н сохране́ния моме́нта и́мпульса (закон сохранения углового момента) — математически выражается через векторную сумму всех моментов импульса относительно выбранной оси для замкнутой системы тел и остается постоянной, пока на систему не воздействуют внешние силы. В соответствии с этим момент импульса замкнутой системы в любой системе координат не изменяется со временем.

Закон сохранения массы — закон физики, согласно которому масса физической системы сохраняется при всех природных и искусственных процессах.

Пери́од полураспа́да - время, за которое распадается по­ловина количества исходного вещества. Чтобы радиоактивность снизилась до 1% исходного вещества, должно пройти примерно семь периодов полураспада.
Необходимо подчеркнуть, что половина атомов радиоактивного вещества распадается за указанное время лишь в среднем. Фактически некоторые ато­мы не распадаются вовсе, в то время как другие распадаются в значительно более короткие проме­жутки времени.
Чем интенсивнее идет радиоактивный распад, тем короче период полураспада. .

Закон радиоактивного распада — физический закон, описывающий зависимость интенсивности радиоактивного распада от времени и количества радиоактивных атомов в образце.

Скорость превращения всё время пропорциональна количеству систем, еще не подвергнувшихся превращению.

Наши рекомендации