Естественный и поляризованный свет. Закон Малюса.
Кольца Ньютона.
No comment...
Применение интерференции.
Интерференцию применяют, например, для получения картины внутренних напряжений детали. При этом из прозрачного материала изготавливают точную копию детали. При приложении к детали внешних сил можно в местах деформации наблюдать интерференционную картину. Нанесение на линзы пленок для уменьшения потерь при прохождении света через объектив - наз. просветление
оптики.
43. Принцип Гюйгенса-Френеля.
Принцип Гюйгенса - все точки поверхности, через котрорые проходит фронт волны в некоторый момент времени t, следует рассматривать как источники вторичных волн, а искомое положение фронта в момент времени t+dt совпадает с поверхностью, огибающей все вторичные волны. При этом считается, что в однородной среде вторичные волны излучаются только вперед, т.е. в направлениях, составляющих острые углы с внешней нормалью к фронту волны. Принцип Гюйгенса является чисто геометрическим. Он не указывает способа расчета амплитуды волны. Поэтому принцип Гюйгенса недостаточен для расчета закономерностей распространения световых волн. Приближенный метод решения этой задачи, являющийся развитием принципа Гюйгенса на Основе предложенной Френелем идеи о когерентности вторичных волн и их интерференции при наложении, называется принципом Гюйгенса-Френеля. Этот принцип можно выразить так : 1. при расчете световых колебаний источник можно заменить эквивалентной ему системой вторичных источников - малых участков dS любой замкнутой вспомагательной поверхности S, проведенной так, чтобы она охватывала источник. 2. Вторичные источники когерентны между собой и поэтому возбуждаемые ими волны интерферируют при наложении.
44. Прямолинейность распределения света согласно методу зон Френеля.
С помощью принципа Гюйгенса-Френеля можно обосновать с волновой точки зрения закон прямолинейного распространения света в однородной среде. Разобъем поверхность S на небольшие кольцевые участки - зоны Френеля. Колебания, возбуждаемые в точке М двумя соседними зонами противоположны по фазе, т.к. разность хода от сходственных точек этих зон до точки М равна половине длины волны. Следовательно, амлплитуда колебаний в точке М равна А=А1-А2+А3-А4+.., где Аi - амплитуда колебаний, возбуждаемых в точке М вторичными источниками, находящимися в пределах одной зоны. С увеличением i увеличивается и расстояние от зоны до точки М, и угол между нормалью к поверхности зоны и направлением в точку М. Поэтому, согласно принципу Гюйгенса-Френеля A1 > A2 > A3 .., а Ai = (Ai+1 + Ai-1)/2, следовательно амплитуда колебаний в точке М равна А = А1/2, т.е. результирующее действие всего открытого волнового фронта равно половине действия первой (центральной) зоны Френеля, радиус к-рой очень мал. Таким образом можно считать, что свет распространяется из S в M прямолинейно.
45. Дифракция от щели.
Дифракцией света называется совокупность явлений, которые обусловлены волновой природой света и наблюдаются при его распространении в среде с резко выраженной оптической неоднородностью ( вблизи границ непрозрачных тел, в отверстиях экранов). В более узком смысле под дифракцией понимается огибание светом встречных препятствий, сравнимых с длиной волны. Различают два случая дифракции света : дифракцию Френеля(дифракция в сходящихся лучах) и дифракцию Фраунгофера(дифракция в параллельных лучах) - дифракция на щели.
Дифракционная решетка.
Дифракционная решетка представляет собой систему из большого числа одинаковых по ширине и параллельных дркг другу щелей в экране, разделенных также одинаковыми по ширине непрозрачными промежутками. Сумма ширина одного прозрачного и непрозрачного промежутка называется постоянной или периодом дифракционной решетки.
47. Дисперсия света. Отличие дисперсионного и дифракционного спектров.
Дисперсией света называется зависимость фазовой скорости света в среде от его частоты. Эта зависимость легко обнаруживается, например при прохождении пучка белого цвета через призму. На экране, установленном за призмой, наблюдается радужная полоска, которая называется призматическим или дисперсионным спектром. Зависимость показателя преломления среды от частоты света нелинейная и немонотонная. Области значений, в которых с ростом частоты увеличивается также показатель преломления, соответсвуют нормальной дисперсии света (если наоборот - дисперсия аномальная).
48. Дифракция рентгеновских лучей.
Дифракцию рентгеновских лучей на кристаллах можно истолковать как результат интерференции рентгеновского излучения, зеркально отражающегося от систем параллельных плоскостей, которые проходят через узлы кристаллической решетки. Эти плоскости называются сетчатыми, или атомными, плоскостями кристалла(в кристалле дифракция объемная - т.е. трехмерная). Расстояние между двумя соседними сетчатыми плоскостями наз. межплоскостным расстоянием, а угол между падающим лучом и сетчатой плоскостью - углом скольжения.
Естественный и поляризованный свет. Закон Малюса.
Свет наз. естественным или неполяризованным, если направление колебания вектора Е не является преимущественным. Свет называется частично поляризованным, если в нем имеется преимущественные направление колебания вектора Е. Частично поляриз. свет можно рассматривать как совокупность одновременно распространяющихся в одном и том же направлении естественного и линейно поляризованного света. Поляризацией света назыв. выл=деление линейно поляризованного света из естественного или частично поляризованного. Для этой цели используют поляризаторы. Их действие основывается на поляризации света при его отражении и преломлении на границе раздела двух сред, а также на явлениях линейного лучепреломления и дихроизма. То же устройство можно использовать в качестве анализаторов, т.е. для определения характера и степени поляризации света. Закон Малюса : Ia = Ip*cos2(a), где Ia и Ip интенсивности линейно поляризованного света, пропущенного анализатором и падающего на него. Угол а - между главной плоскостью поляризатора и плоскостью в к-рой изменяется Е.
50. Закон Брюстера. Получение поляризованных лучей.
Закон Брюстера : отраженный свет полностью линейно поляризован при угле падения i=iБр, удовлетворяющего условию tg(iБр) = n, где n - относительный показатель преломления отражающей свет среды.
51. Эффект Керра. Оптически активные среды.
Оптически изотропное прозрачное тело становится анизотропным( т.е. показатель преломления зависит от направления волны), если его подвергуть механической деформации. Эффектом Керра называется возникновение оптической анизотропии у прозрачного изотропного твердого, жидкого или газообразного диэлектрика при помещении его во внешнее электрич. поле. Под действием однородного эл. поля диэлектрик поляризуется и приобретает отические св-ва одноосного кристалла, оптическая ось к-рого совпадает по направлению с вектором Е напряженности поля.
52. Применение поляризации.
Для телеуправления затемнения стекол в навороченых тачках и президентских дачах.
53. Поглощение света. Закон Бугера-Ламберта.
Поглощением света наз. явление уменьшения энергии световой волны при ее распространении в веществе, происходящее вследствие преобразования энергии волны во внутреннюю энергию в-ва или в энергию вторичного излучения, имеющего другой спектральный состав и иные направления распространения. Поглощение света может вызывать нагревание в-ва, возбуждение и ионизацию атомов или молекул, фотохимические реакции. Поглощение света описывается законом Бугера-Ламберта, соглано к-рому интенсивность плоской волны монохроматического света уменьшается по мере прохождения через поглощающую среду по экспоненциальному закону : I = Io e-a'x, где Iо и I - значения интенсивности света на входе и выходе из слоя среды толщиной x, а а' - натуральный показатель поглощения среды, который зависит от природы и состояния поглощающей среды и от длины волны света.
54. Рассеяние света.
Рассеянием света наз. явление преобразования света веществом, сопровождающееся изменением направления распространения света и проявляющееся как несобственное свечение тела. Это свечение обусловлено вынужденными колебаниями электронов в атомах рассеивающей среды под действием падающего света. Рассеяние света происходит в оптически неоднородной среде, показатель преломления к-рой нерегулярно изменяется от точки к точки вследствие флуктуаций плотности среды (молекулярное или рэлеевское рассеяние) либо за счет присутствия в среде инородных малых частиц (рассеяние света в мутной среде).
55. Виды излучения. Характеристики теплового излучения. Абсолютно черное тело.
Излучения - в зависимости от длины волны - Радиоволны, Оптическое излучение, инфракрасное излучение, видимое излучение, ультрафиолетовое, рентгеновсое и гамма излучение. Электромагнитное излучение, испускаемое в-вом и возникающее за счет его внутренней энергии называется тепловым. Оно зависит только от температуры и оптических св-в излучающего тела. Тепловое излучение - единственное, которое может находится в термодинамическом равновесии с веществом. Абсолютно черное тело - тело, которое полностью поглощает все падающее на него излучение независимо от направления падающего излучения, его спектрального состава и поляризации, ничего не отражая и не пропуская. Моделью может служить почти замкнутая полость (сфера) с небольшим отверстием. Это отверстие - а.ч.т.
56. Закон Киргофа. Функция Киргофа.
Закон Киргофа : отношение испускательной способности к его поглощательной способности не зависит от природы тела и равно испускательной способности абсолютно черного тела при тех же значениях температуры и частоты. Зависимость испускательной способности от частоты и температуры называется функцией Киргофа : rv = f(f,T).
57. Закон Стефана-Больцмана. Законы Вина.
Закон Стефана-Больцмана : энергетическая светимость абсолютно черного тела пропорциональна четвертой степени его абсолютной температуры. Закон смещения Вина - при повышении температуры тела максимум испускательной способности абсол. черного тела смещается в сторону меньших длин волн - Y = b/T, где Y - длина волны, а b=0.029 м*К - постоянная Вина.
58. Формула Релея-Джинса. Ультрафиолетовая катастрофа.
Формула Рэлея-Джинса согласовалась с экспериментальными данными только в области малых частот. Кроме того из нее следовал абсурдный вывод о том, что при любой температуре энергитическая светимость абс. черн. тела и объемная плотность энергии равновесного излучения бесконечно велики. Этот результат к которому пришла классическая физика в задаче о спектральном распределении равновесного излучения, получил образное название "Ультрафиолетовая катастрофа".
Вывод формулы Планка по Эйнштейну.
В качестве теоретической модели абсолютно черного тела можно взять бесконечную систему гармонических осцилляторов со всевозможными общими частотами. Каждый из таких осцилляторов соответствует монохроматической компоненте черного излучения. Правильное выражение для средней энергии осциллятора удалось найти Планку путем введения квантовой гипотезы, совершенно чуждой классической физике - энергия осциллятора может принимать лишь определенные дискретные зачения, равные целому числу элементарных порций энергии - квантов энергии. Квант энергии ревен : Ео = hf, f - частота света, h - постоянная планка.
60. Законы фотоэффекта. Формула Эйнштейна для фотоэффекта.
Фотоэффектом называют явление возникновения электронного облака над поверхностью в-ва под действием света. Фотоэффект безинерционен. Законы фотоэффекта были открыты Столетовым. 1-й закон : кол-во электронов, вырываемых светом из металла в единицу времени, прямо пропорционально интенсивности световой волны. 2-й закон : максимальная кинетическая энергия фотоэлектронов линейно возрастает с частотой света и не зависит от интенсивности света. Если частота света меньше определенной для данного в-ва частоты, то фотоэффект не наблюдается(красная граница фотоэффекта). Уравнение Эйнштейна для фотоэффекта : Е = hf - Aвых, где Е - максимальная кинетич. энергия эл-нов после вылета, Авых - работа выхода электрона, f - частота падающего света.
61. Опыт Боте.
Тонкая металлическая фольга помещалась между двумя газоразрядными счетчиками. Фольга освещалас слабым пучком рентгеновских лучей, под действием к-рых она сама становилась источником рентгеновских лучей(явление рентгеновской флуорисценции). Вследствие малой интенсивности первичного пучка кол-во квантов, испускаемых фольгой было невелико. При попадании на счетчик вторичных рентгеновских лучей с фольги, он срабатывал и приводил в действие особый механизм, делавший отметку на движущейся ленте. Если бы излучаемая энергия распространялась равномерно во все стороны, как это следует из волновых представлений, оба счетчика должны были бы срабатывать одновременно и отметки на ленте приходились бы одна против другойю В действительности наблюдалось совершенно беспорядочное расположение отметок, это можно объяснить только тем, что в отдельных процессах испускания возникают световые частицы, летящие то в одном, то в другом направлениях - фотоны.
62. Рентгеновское излучение.
Или ренгеновские лучи - назыв. электромагнитное излучение, которое возникает при взаимодействии заряженных частиц и фотонов с атомами в-ва и характеризуется длинами волн в вакууме, лежащими в широком диапазоне с условными границами : от 10-100 нм до 0,01-1 пм. Рентгеновсое излучение обладает большой проникающей способностью.
Эффект Комптона.
Эффектом комптона наз. изменение длины волны рентгеновского излучения при его рассеянии веществом, содержащим легкие атомы. Эффект Комптона не удается объяснить на основе классической волновой теории света. Согласно квантовой теории, эффект Комптона является результатом упругого столкновения рентгеновского фотона со свободным или почти свободным электроном(с малой связью с ядром). При этом фотон передает электрону часть своей энергии и часть своего импульса в соответствиями с законами сохранения энергии и импульса. Если эл-н сильно связан с атомом, то при рассеянии на нем фотона последний передает энергию и импульс не электрону, а атому в целом.
64. Виды спектров. Формула Бальмера.
Совокупность частот, к-рые содержатся в излучении какого-либо в-ва, называется спектром испускания (Эмиссионым спектром) этого в-ва, а поглощаемых - спектром поглощения (адсорбционным спектром). 2. Светящиеся газы в атомном состоянии создают линейчатые спектры испускания, состоящие из отдельных узких спектральных линий. 3. Излучающие молекулы создают полосатые спектры испускания, в к-рых множество тесно расположенных спектральных линий образуют группы - полосы, разделенные темными промежутками. 4. Ракаленные твердые тела и жидкости создают непрерывный спектр испускания. Обращение спектральных линий испускания и поглощения : атомы данного хим. элемента поглощают те спектральные линии(частоты), к-рые они сами испускают. Формула Бальмера - It's so easy.
65. Постулаты Бора. Опыт Франка и Герца.
Постулаты Бора : электроны могут находится на стационарных орбитах, на которых они не излучают. 2. В стациоенарном состоянии атома электрон квантованные значения момента импульса L = mvR; 3. При переходе с одной орбиты на другую электрон излучает/поглощает енергию.
66. Атом водорода по теории Бора.
Атом представляет собой положительно заряженное ядро. Электрон, движущийся вокруг него по круговой орбите, подчиняется второму закону Ньютона ma = Fk, где Fk - сила кулоновского притяжения к ядру, m - масса эл-на, a-центростреметильное ускорение. Для определения разрешенных орбит Бор ввел постулат - правило квантования : mVr = nh/2p, n=(1,2,..)
67. Гипотеза де Бройля. Опыт Девисона. Опыт Фабриканта.
В 1924 г. Бройль выдвинул гипотезу, что дуализм не является особенностью одних только оптических явлений, но имеет универсальное значение. Допускается, что частицы наряду с курпускулярными св-ми имеют также и волновые, де Бройль перенес на случай частиц в-ва те же правила перехода от одной картины к другой, какие справедливы в случае света. По идее де Бройля, движение электрона или какой-либо другой частицы связано с волновым процессом, длина волны к-рого равна h/mv, m - масса частицы, v - ее скорость, h - постоянная Планка. Гипотеза подтвердилась опытами Девисона и Фабриканта. Девисон исследовал отражение электронов от монокристалла никеля. Узкий пучок моноэнергетических эл-нов направлялся на поверхность монористалла, сошлифованною перпендикулярно к большой диагонали кристалл. решетки. Отраженные электроны улавливались цилиндрическим электродом, присоед. к гальванометру. Интенсивность отраженного пучка оценивалась по силе тока, при этом варьировались скорость электронов и угол падения. Опыт Фабриканта - дифракция эл-на (пропускали по одиночке через прибор, промежуток времени между двумя последовательными прохождениями эл-нов через кристалл примерно в 30 000 раз превосходил время, затраченное на прохождение эл-ном на прохождение всего прибора).
68. Двойственность свойств микрочастиц.
По гипотезе де Бройля микрочастицы обладают двойственной природой. Они проявляют как волновые (дифракция, отражение, преломление, интерференция) св-ва, так и курпускулярные (фотоэффект, эффект Комптона, излучение тел)
69. Принцип неопределенности Гейзенберга.
Утверждение о том, что произведение неопределенностей значений двух сопряженных переменных не может быть по порядку величины меньше постоянной Планка, называется принципом неопределенности Гейзенберга. Соотношения неопределенностей накладывабт в квантовой механикеопределенные ограничения на возможности описания движения частицы по некоторой траэктории. Нельзя со 100 % точностью определить местоположение частицы. Частица не локализуется в пространстве.
70. Уравнение Шредингера. Физический смысл пси-функции.
Положение частицы в пространстве в данный момент времени определяется в квантовой механике заданием волновой функции (пси-функции). Волновая ф-я является основной характеристикой состояния микрообъектов (атомов, молекул и т.д.). Квадрат пси-функции есть плотность вероятности и задает вероятность пребывания частици в данной точке пространства. Уравнением Шредингера назыв. основное диффер. уравнение относительно волновой ф-ции. Оно определяет пси-функцию для микрочастиц, движущихся в силовом поле с потенциальной энергией U, со скоростью v<<c.
71. Решение уравнения Шредингера для свободной частицы.
72. Стандартные условия для стационарного уравнения Шредингера для энергии и моментов.
В случае, когда пси-функция не зависит от времени, она удовлетворяет стационарному уравнению Шредингера. Пси-функции удовлетворяющие этому уравнению Шредингера наз. собственными ф-ями. Они существуют лишь при определенных значениях енергии(собственные значения энергии). Совокупность собственных значений энергий образует энергетический спектр частицы.
73. Частица в потенциальной яме : квантование энергии.
Потенциальной ямой называется область пространства, в которой потенциальная энергия U частицы меньше некоторого значения Umax. Движение коллективизированных эл-нов в атоме рассматривается в классической электронной теории как движение в потенциальной яме, причем вне металла потенциальная энергия эл-на равна нулю, а внутри металла она отрицательна и численно равна работе выхода эл-на. Физические в-ны, которые могут принимать лишь определенные дискретные значения, называются квантованными. Собственные значения энергии W частицы в одномерной потенциальной яме бесконечной глубины : W = n2h2/2mL2, где n=(1,2,..). Квантованные значения Wn называются уровнями энергии, а числа n - квантовыми числами.
74. Частица в потенциальной яме : вероятность нахождения.
Описывается стационарным уравнением Шредингера для частицы в потенциальной яме - Вероятность найти частицу вне потенциальной ямы равна нулю.
75. Туннельный эффект.
Туннельным эффектом называется прохождение частиц сквозь потенциальные барьеры(поле сил, действующих на частицу). Туннельный эффект является квантомеханическим эффектом, связанным с тем, что частицы обладают волновыми св-вами. Прозрачностью D потенциального барьера назыв. величина : D = Iпрох/Iпад, Iпрох - интенсивность волны де Бройля, прошедшей сквозь барьер, Iпад - падающей на барьер.
76. Нулевые колебания.
ABSENT
77. Образование энергетических зон в кристалле. Принцип запрета Паули.
В изолированных атомах электроны находятся в дискретных энергетических состояниях. В твердом теле энергетические состояния определяются ка взаимодействие их с ядром своего атома, так и электрическим полем кристаллической решетки, т.е. взаимодействием с другими атомами. В результате этого взаимодействия энергетические атомы электронов расщепляются. Вместо дискретного энергетического уровня, характерного для изолированного атома, возникает N близко расположенныхдруг от друга энергетических уровней, которые образуют энергетическую полосу(зону). В кристаллах образуется зонный энергетический спектр электронов. Образование зонного энергетического спектра вытекает из соотношения неопределенностей.
78. Металлы, полупроводники, диэлектрики : энергетические зоны.
Различия в электрических свойстах твердых тел объясняются в зонной теории различным заполнением электронами разрешенных энергетических зон. Эти два фактора определяют отнесение данного твердого тела к проводникам электрического тока или к диэлектрикам. Необходимым условием возможности для того, чтобы твердое тело могло быть проводником, является наличие свободных энергетических уровней, на к-рые электрическое поле могло бы перевести электроны. Следует учитывать, что это поле может вызвать лишь внутризонные переходы электронов. Если зона не полностью занята валентными электронами, то твердое тело всегда является проводником электрического тока. Полупроводниками называются твердые тела, у которых валентная зона отдалена от пустой зоны проводимости ( при Т=0 К) сравнительно узким интервалом энергии dW, меньшим, чем у диэлектрических кристаллов. У кремния dW = 1,1 эВ
79. Собственная и примесная проводимость полупроводников.
Чистые полупроводники обладают собственной проводимостью. В создании тока в равной мере участвуют свободные заряды двух типов : отрицательные - электроны и дырки - полож. В чистом полупроводнике концентрация свободных электронов и дырок одинакова. Примесная проводимость бывает двух типов : n-типа или электронная проводимость(возникает при перебросе электронов из валентной зоны в зону проводимости). Примесные атомы должны обладать большей валентностью, чем основные атомы полупроводника. Отсюда концентрация свободных электронов в проводниках n-типа гораздо больше, чем дырок. Примесные проводники р-типа обладают дырочной проводимостью. Примесные атомы меньшей валентности и, значит, дырок значительно больше, чем свободных электронов. Однако самые удивительные вещи происходят на границе соприкосновения двух этих проводимостей при протекании через нее эл. тока.