Идеальная тепловая машина Карно и ее КПД


мается количество теплоты Q2 и отдается во внешнюю среду с темпе-ратурой (Т1 > Т2) количество теплоты, равное Q1 . Для оценки эффек-тивности работы холодильной установки используют отношение ко-личества теплоты, отнятого за цикл от холодильной камеры, к работе А внешних сил.Эта величина называется показателем цикла k,или

холодильным коэффициентом:

      k = Q2   =     Q2   . (12.8.3)  
      A     Q   −Q  
             
                     
                         
    12.9.  
p                   При изучении работы различ-  
1 T1= const   ных тепловых машин большую роль  
     
    Q1     сыграл цикл, предложенный Карно и  
      2   детально рассмотренный им в 1824 г.  
        в связи с определением КПД тепло-  
           
  4       вых машин. Циклом Карно называют  
        обратимый круговой процесс, со-  
  T2= const Q2 3    
    стоящий из двух изотермических и  
  V1 V4 V2 V3 V   двух   адиабатических равновесных  
  Рис. 12.9.1     процессов.      
                На рис. 12.9.1 изображен пря-  
                     
                                 

Идеальная тепловая машина Карно и ее КПД - student2.ru мой цикл Карно, состоящий из четырех последовательных процессов: 1−2 −изотермическое расширение при температуре Т1; 2−3 −адиаба-тическое расширение (Q23 = 0); 3−4 − изотермическое сжатие при тем-пературе T2; 4−1 − адиабатическое сжатие (Q41 = 0).

Рассчитаем работу А, совершаемую идеальным газом в прямом равновесном цикле Карно. При изотермическом расширении на уча-стке 1 −2 внутренняя энергия U(T) = const, поэтому количество тепло-ты Q1 полученное газом от нагревателя, равно работе расширения, со-

вершаемой газом при переходе из состояния 1 в состояние 2:    
Q = Q = A =νRT ln V2 . (12.9.1)  
V1    
           

При адиабатическом расширении 2−3 теплообмен с окружаю-щей средой отсутствует, и работа расширения А23 совершается за счет изменения внутренней энергии газа:

A23 = − U23 = νCM (Tl − T2). (12.9.2)
    V  


При изотермическом сжатии на участке 3−4 теплота, отданная газом холодильнику, отрицательна и равна

      Q = Q   = A   =νRT ln V4 .     (12.9.3)  
          V3        
                                   
При адиабатическом сжатии на участке 4−1 работа A4l равна  
A41=− U41=νCM (T2– T1) =−νCM (Tl − T2)= −A23 . (12.9.4)  
        V           V            
Суммарная работа равна                      
А = А12+ А23+ А34+ А41= Q1+ Q2= Q1−|Q2|. (12.9.5)  
Термический КПД цикла Карно              
η= A = Q1   Q2   = T1ln(V2 V1)−T2ln(V3 V4) . (12.9.6)  
     
     
               
  Q     Q         T ln(V V )    
                       
Применим уравнение адиабаты TV γ1 = const на участках 2−3 и  
4−1 цикла Карно                                  
  TV γ−1 =T V γ−1 и TV γ−1 =T V γ−1 . (12.9.7)  
           
Разделим одно выражение на второе и получим    
                  V2 = V3 .           (12.9.8)  
                  V   V              
                                 
С учетом соотношения (12.9.8) выражение (12.9.6) для КПД  
цикла можно упростить:                              
                η= T1T2 .         (12.9.9)  
                        T              
                                     

Идеальная тепловая машина Карно и ее КПД - student2.ru Таким образом, для цикла Карно КПД определяется только тем-пературами нагревателя и холодильника.

Сравнение КПД различных обратимых и необратимых цик-лов с КПД обратимого цикла Карно (идеальной тепловой машины) позволило сделать следующий вывод: КПД любого реального об-

ратимого или необратимого прямого кругового процесса (тепло-вой машины) не может превышать КПД идеальной тепловой ма-шины с теми же температурами Т1 нагревателя и Т2 холодильни-

ка.Принимая во внимание формулы(12.8.2)и(12.9.9),можно за-писать:



  Q1   Q2       T −T    
           
η=             . (12.9.10)  
Q      
        T    
                 

Более общий анализ показывает,что формула(12.9.9)справед-лива, если цикл Карно совершает любое рабочее тело, а не только идеальный газ. В этом случае формула (12.9.9) выражает теорему Карно:КПД цикла Карно не зависит от природы рабочего тела и оттехнических способов осуществления цикла. Единственные парамет-ры, определяющие КПД этого цикла, − это температуры нагревателя и холодильника. Другая формулировка теоремы Карно: коэффициент полезного действия всех обратимых машин, работающих в идентич-ных условиях (т. е. при одной и той же температуре нагревателя и хо-лодильника), одинаков и определяется только температурами нагрева-теля и холодильника.

Обратный цикл Карно служит основой работы идеальной холо-дильной установки. Для холодильного коэффициента k выполняется выражение

k =     Q2   T2 . (12.9.11)  
  Q   −Q T −T  
     
             
             

Из этого выражения видно, что чем меньше разность между температурами окружающей среды Т 1 и холодильной камеры Т 2 , тем больше холодильный коэффициент к и тем эффективнее работа холо-дильной установки. Заметим также, что k = Т2 /( Т1 − Т2) может быть больше единицы и это не противоречит тому, что КПД теплового дви-гателя всегда меньше 1.



Лекция № 20

12.10. Понятие об энтропии. Энтропия идеального газа. Ста-тистическое истолкование второго начала термодинамики.

12.11. Третье начало термодинамики.

Наши рекомендации