Временное представление случайных сигналов и их вероятностные характеристики
![]() |
Как отмечалось ранее, все сообщения имеют случайный характер. Следовательно, и сигналы, отображающие эти сообщения, являются случайными. Эквивалентными названиями случайного сигнала как функции времени являются: случайный процесс, стохастический процесс, вероятностный процесс.
Конкретный вид, принимаемый случайным процессом в результате опыта, называется реализацией процесса. Совокупность реализаций случайного процесса (рисунок 1.6, а), полученная в результате опытов, называется ансамблем реализаций случайного процесса
.
Величина k-ой реализации случайного процесса в определенный момент времени (например, t=t1) называется выборкой случайного процесса . Совокупность значений выборок в определенный момент времени (t=t1) образует случайную величину
.
Вероятность того, что в определенный момент t=t1 величина Х находится в интервале между Х1 и Х1+dX
, (1.19)
где - одномерная плотность вероятностей или одномерная функция распределения случайного процесса X(t).
Плотность вероятности есть в общем случае функция времени и является производной от интегральной функции распределения
![]() ![]() | (1.20) |
На рисунке 1.6, б) приведен график наиболее часто встречающегося на практике нормального закона распределения плотности вероятности случайной величины Х в определенный момент t1.
Математическое описание этого закона имеет вид
![]() | (1.21) |
где a и - математическое ожидание и среднеквадратическое отклонение случайной величины Х.
.
При любом законе распределения справедливо равенство
.
Одномерный закон распределения плотности вероятности является простейшей статистической характеристикой случайного процесса. Он характеризует процесс лишь в отдельные моменты времени (статически) и не дает представления о динамике его развития.
Для более полной характеристики случайного процесса необходимо знать связь между вероятными значениями случайной функции при двух произвольных моментах времени t1 и t2. Эта связь выражается через двумерную плотность вероятности и формулируется следующим образом: вероятность нахождения любой из функций , входящих в совокупность функций
, в интервале
в момент времени
и в интервале
в момент времени
.
,
где - двумерная плотность вероятности (двумерный дифференциальный закон распределения) случайного процесса
.
Рассуждая аналогичным образом можно ввести понятие о трехмерной, а также о n-мерной плотностях вероятности случайного процесса
. Тогда вероятность сложного события, состоящего в том, что в момент
функция
находится в интервале
, в момент
- в интервале
и т.д…., в момент
- в интервале
и т.д. равна
Чем больше число n, тем точнее n-мерная функция распределения характеризует случайный процесс.
Однако n-мерные функции распределения тяжело получить и сложно использовать, поэтому ищут более простые варианты для применения.
Например, если случайные величины независимы при любых произвольных
, то дифференциальный и интегральный n-мерный закон распределения равны произведению одномерных соответствующих законов.
![]() | (1.22) |
Широко используются числовые характеристики случайных процессов.