Термохімія і елементи хімічної термодинаміки

Наука про взаємні перетворення різноманітних видів енергії називається термодинамікою. Термодинаміка встановлює закони цих перетворень, а також напрямок самовільного перебігу різноманітних процесів за даних умов. Розділ термодинаміки, який вивчає теплові ефекти хімічних реакцій, називається термохімією.

В термодинаміці використовується поняття системи. Система - сукупність тіл, яка для теоретичного або експериментального вивчення умовно або реально відокремлена від оточуючого простору. Ізольованою системою називається система, яка не обмінюється з оточуючим простором енергією та масою. Закритою називається система, яка обмінюється енергією, відкритою називається система, яка обмінюється з оточуючим середовищем масою і енергією.

Для термодинамічної характеристики системи використовують функції стану, які однозначно визначаються параметрами стану (P,V,T). Значення цих функцій не залежать від характеру процесу, який приводить систему в даний стан.

Однією з важливих функцій стану є внутрішня енергія (U) системи – загальний запас енергії, який включає енергію поступального і обертального руху молекул, енергію внутрішньомолекулярних коливань атомів і атомних груп, енергію руху електронів, ядерну енергію тощо.

Внутрішня енергія – це повна енергія системи без потенціальної і кінетичної енергії системи в цілому.

Перший закон термодинаміки (виражає закон збереження енергії) для ізольованої системи: загальний запас внутрішньої енергії системи залишається сталим (DU = 0); для закритої системи: внесена при сталій температурі теплота Q витрачається на прирощення внутрішньої енергії і виконання роботи А проти зовнішніх сил: Q = U + A.

Робота при хімічних реакціях здійснюється розширеним газом, тому А = РDV, де DV= (V2 - V1) – зміна об’єму системи

Q = DU + pDV.

Хімічні реакції проводять при сталому тиску чи об’ємі, а також при сталій температурі.

Використовуючи перший закон термодинаміки, можна показати, що тепловий ефект реакції, яка відбувається при сталому об’ємі, дорівнює зміні внутрішньої енергії системи, тобто QV = DU.

Тепловий ефект реакції при сталому тиску дорівнює зміні ентальпії системи:

QP = DH.

Ентальпія – функція стану (H = U + PV ), що еквівалентна внутрішній енергії для процесів, які відбуваються при сталому тиску. Частіше зустрічаються ізобарні процеси, тому теплові ефекти виражаються через DН.

Основою термохімічних розрахунків єзакон Гесса:

Тепловий ефект реакцій, які відбуваються при сталому тиску або при сталому об’ємі, а також при сталій температурі, не залежить від числа проміжних стадій, а визначається лише початковим і кінцевим станом системи.

Як наслідок із закону Гесса тепловий ефект прямої реакції дорівнює за величиною і протилежний за знаком тепловому ефекту зворотної реакції :

прям = - DНзвор; DНутв = - DНрозк.

Розглянемо методи розрахунку теплових ефектів хімічних реакцій. Введемо основні поняття і визначення.

Рівняння реакцій, в яких вказуються агрегатний стан чи кристалічна модифікація хімічних сполук, а також числове значення теплових ефектів, називаються термохімічними. Якщо теплота в реакції виділяється (реакція екзотермічна), то DН < 0, якщо теплота поглинається (реакція ендотермічна), то DН > 0. Теплові ефекти реакцій ( DН реак) виражаються у кДж або ккал. Наприклад:

PCl5 (кр.) + H2O (p.) ® POCl3 (кр.) + HCl(г.); DH реак = - 111,4кДж;

C2H6(г.) ® 2C(гр. ) + 3H2(г.) ; DH реак = 84,67 кДж.

Перша реакція екзотермічна, друга – ендотермічна.

Значення DН залежить від природи речовини, від її агрегатного стану, від умов проведення процесу, тому їх прийнято уніфікувати за так званим стандартним станом. Стандартний стан – це стан чистої речовини при тиску 1,01325.105 Па. Якщо не визначено спеціально, температура стандартного стану 298 К (25 °С). Часто стандартний стан при температурі 298 К називають стандартними умовами. Значення DН за цих умов називаються стандартними і позначаються DН° (DН°298).

Наши рекомендации