Гдеq- величина движущегося заряда;V- модуль его скорости;B- модуль вектора индукции магнитного поля;a- угол между вектором скорости заряда и вектором магнитной индукции.
Билет № 7
1) Электрическим током называют всякое упорядоченное движение электрических зарядов.
Металлы состоят из положительно заряженных ионов, находящихся в узлах кристаллической решетки и совокупности свободных электронов. Вне электрического поля свободные электроны движутся хаотически, подобно молекулам идеального газа, а потому рассматриваются в классической электронной теории какэлектронный газ.
Под действием внешнего электрического поля меняется характер движения свободных электронов внутри металла. Электроны, продолжая хаотичные движения, вместе с тем смещаются в направлении действия сил электрического поля.
Следовательно,электрический ток в металлах - это упорядоченное движение электронов.
гдеI- сила тока в проводнике, e - модуль заряда электрона, n0 - концентрация электронов проводимости, - средняя скорость упорядоченного движения электронов, S - площадь поперечного сечения проводника.
2) Существование свободных электронов в металлах можно объяснить следующим образом: при образовании кристаллической решетки металла (в результате сближения изолированных атомов) валентные электроны, сравнительно слабо связанные с атомными ядрами, отрываются от атомов металла, становятся «свободными» и могут перемещаться по всему объему. Таким образом, в узлах кристаллической решетки располагаются ионы металла, а между ними хаотически движутся свободные электроны, образуя своеобразный электронный газ, обладающий, согласно электронной теории металлов, свойствами идеального газа.
3) Вывод закона Джоуля-Ленца в дифференциальной форме:
Если ток проходит по неподвижному металлическому проводнику, то вся работа тока идет на его нагревание и, по закону сохранения энергии,
Таким образом, получим:
Данное выражение представляет собой закон Джоуля — Ленца.
4)Закон Видемана — Франца — это физический закон, утверждающий, что для металлов отношение коэффициента теплопроводности (либо тензора теплопроводности) к удельной электрической проводимости (либо тензору проводимости) пропорционально температуре:
.
5) Как показывает опыт, свободные электроны при обычных температурах практически не покидают металл. Следовательно, в поверхностном слое металла должно быть задерживающее электрическое поле, препятствующее выходу электронов из металла в окружающий вакуум. Работа, которую нужно затратить для удаления электрона из металла в вакуум, называется работой выхода. Укажем две вероятные причины появления работы выхода:
1. Если электрон по какой-то причине удаляется из металла, то в том месте, которое электрон покинул, возникает избыточный положительный заряд и электрон притягивается к индуцированному им самим положительному заряду.
2. Отдельные электроны, покидая металл, удаляются от него на расстояния порядка атомных и создают тем самым над поверхностью металла «электронное облако», плотность которого быстро убывает с расстоянием. Это облако вместе с наружным слоем положительных ионов решетки образует двойной электрический слой, поле которого подобно полю плоского конденсатора. Толщина этого слоя равна нескольким межатомным расстояниям (10–10—10–9 м). Он не создает электрического поля во внешнем пространстве, но препятствует выходу свободных электронов из металла.
6) Если сообщить электронам в металлах энергию, необходимую для преодоления работы выхода, то часть электронов может покинуть металл, в результате чего наблюдается явление испускания электронов, или электронной эмиссии. В зависимости от способа сообщения электронам энергии различают термоэлектронную, фотоэлектронную, вторичную электронную и автоэлектронную эмиссии. Примеры : Фотоэлектронная эмиссия — это эмиссия электронов из металла под действием света, а также коротковолнового электромагнитного излучения (например, рентгеновского). Основные закономерности этого явления будут разобраны при рассмотрении фотоэлектрического эффекта.
Вторичная электронная эмиссия — это испускание электронов поверхностью металлов, полупроводников или диэлектриков при бомбардировке их пучком электронов. Вторичный электронный поток состоит из электронов, отраженных поверхностью (упруго и неупруго отраженные электроны), и «истинно» вторичных электронов — электронов, выбитых из металла, полупроводника или диэлектрика первичными электронами.
7) азы по большей мере состоят из нейтральных молекул. Однако если часть молекул газов ионизируется, газ проводит электрический ток. Есть два основных способа ионизации в газах:
· Термическая ионизация — ионизация, при которой необходимую энергию для отрыва электрона от атома дают столкновения между атомами вследствие повышения температуры;
· Ионизация электрическим полем — ионизация вследствие повышения значения напряжения внутреннего электрического поля выше предельного значения. Из этого следует отрыв электронов от атомов газа.
Билет № 8
1) При прохождении электрического тока по проводнику вокруг него образуется магнитное поле. Магнитное поле представляет собой один из видов материи. Оно обладает энергией, которая проявляет себя в виде электромагнитных сил, действующих на отдельные движущиеся электрические заряды (электроны и ионы) и на их потоки, т. е. электрический ток. Под влиянием электромагнитных сил движущиеся заряженные частицы отклоняются от своего первоначального пути в направлении, перпендикулярном полю (рис. 34).Магнитное поле образуется только вокруг движущихся электрических зарядов, и его действие распространяется тоже лишь на движущиеся заряды. Магнитное и электрические поля неразрывны и образуют совместно единое электромагнитное поле. Всякое изменение электрического поля приводит к появлению магнитного поля и, наоборот, всякое изменение магнитного поля сопровождается возникновением электрического поля. Электромагнитное поле распространяется со скоростью света, т. е. 300 000 км/с.
2)Силовыми линиями магнитного поля называются линии, касательные к которым в каждой точке совпадают с направлением вектора магнитной индукции.
Со свойствами силовых линий, присущих магнитному полю, мы познакомимся позднее, сейчас только напомним свойства таких линий, общие для любых векторных полей:
1. Силовые линии магнитного поля не пересекаются.
2. Силовые линии магнитного поля не имеют изломов.
3) Закон Био-Савара-Лапласа: вектор индукции магнитного поля, созданного элементом проводника , по которому течет ток , имеет вид:
, (1)
где – радиус-вектор, проведенный от элемента до той точки, в которой определяется индукция поля; – магнитная постоянная.
4) Закон Ампераустанавливает, что на проводник с током, помещенный в однородное магнитное поле, индукция которого В, действует сила, пропорциональная силе тока и индукции магнитного поля:
F = BIlsina (a - угол между направлением тока и индукцией магнитного поля ). Эта формула закона Ампера оказывается справедливой для прямолинейного проводника и однородного поля.
5) Рассмотрим два бесконечных прямолинейных параллельных тока I1 и I2; (направления токов даны на рис. 1), расстояние между которыми R. Каждый из проводников создает вокруг себя магнитное поле, которое действует по закону Ампера на соседний проводник с током. Найдем, с какой силой действует магнитное поле тока I1 на элемент dl второго проводника с током I2. Магнитное поле тока I1 есть линии магнитной индукции, представляющие собой концентрические окружности. Направление вектора B1 задается правилом правого винта, его модуль по формуле (5) есть
Направление силы dF1, с которой поле B1 действует на участок dl второго тока, находится по правилу левой руки и указано на рисунке. Модуль силы, используя (2), с учетом того, что угол α между элементами тока I2 и вектором B1 прямой, будет равен
подставляя значение для В1, найдем
(3)
6) Магнитное поле движущегося заряда может возникать вокруг проводника с током. Так как в нем движутся электроны, обладающие элементарным электрическим зарядом. Также его можно наблюдать и при движении других носителей зарядов. Например, ионов в газах или жидкостях. Это упорядоченное движение носителей зарядов, как известно, вызывает в окружающем пространстве возникновение магнитного поля. Таким образом, можно предположить, что магнитное поле независимо от природы тока его вызывающего возникает и вокруг одного заряда находящегося в движении.
Билет № 9
1) Формула силы Лоренца дает возможность найти ряд закономерностей движения заряженных частиц в магнитном поле. Зная направление силы Лоренца и направление вызываемого ею отклонения заряженной частицы в магнитном поле можно найти знак заряда частиц, которые движутся в магнитных полях.
Для вывода общих закономерностей будем полагать, что магнитное поле однородно и на частицы не действуют электрические поля. Если заряженная частица в магнитном поле движется со скоростью v вдоль линий магнитной индукции, то угол α между векторами v и Вравен 0 или π. Тогда сила Лоренца равна нулю, т. е. магнитное поле на частицу не действует и она движется равномерно и прямолинейно.
В случае, если заряженная частица движется в магнитном поле со скоростью v, которая перпендикулярна вектору В, то сила Лоренца F=Q[v B] постоянна по модулю и перпендикулярна к траектории частицы. По второму закону Ньютона, сила Лоренца создает центростремительное ускорение. Значит, что частица будет двигаться по окружности, радиус r которой находится из условия QvB=mv2/r , следовательно
(1)
Период вращения частицы, т. е. время Т, за которое она совершает один полный оборот,
2) Силу, действующую со стороны магнитного поля на движущиеся в нем заряды, называют силой Лоренца.
Сила Лоренца определяется соотношением:
Fл = q·V·B·sina
гдеq- величина движущегося заряда;V- модуль его скорости;B- модуль вектора индукции магнитного поля;a- угол между вектором скорости заряда и вектором магнитной индукции.
Обратите внимание, что сила Лоренца перпендикулярна скорости и поэтому она не совершает работы, не изменяет модуль скорости заряда и его кинетической энергии. Но направление скорости изменяется непрерывно
3) Кругообразное движение заряженных частиц в магнитном поле обладает важной особенностью: время полного обращения частицы по окружности (период движения) не зависит от энергии частицы. Действительно, период обращения равен
Подставляя сюда вместо r его выражение по формуле (3.6), имеем:
(3.7)
4) Основным элементом винтовой линии является ее шаг, обозначаемый через S. Шаг винтовой линии может быть переменным и постоянным. Если переменный шаг задается уравнением, следует вначале построить развертку винтовой линии, а затем ее проекции. Кривая развертки винтовой линии строится большей частью в системе прямоугольных координат.
5) Ускоритель заряженных частиц — класс устройств для получения заряженных частиц (элементарных частиц, ионов) высоких энергий. В основе работы ускорителя заложено взаимодействие заряженных частиц с электрическим и магнитным полями. Электрическое поле способно напрямую совершать работу над частицей, то есть увеличивать её энергию. Магнитное же поле, создавая силу Лоренца, только отклоняет частицу, не изменяя её энергии, и задаёт орбиту, по которой движутся частицы.
6) Закон полного тока для магнитного поля в вакууме (теорема о циркуляции вектора В): циркуляция вектора В по произвольному замкнутому контуру равна произведению магнитной постоянной μ0 на алгебраическую сумму токов, охватываемых этим контуром:
7) поля в веществе, закон полного тока для магнитного поля в веществе (теорема о циркуляции В )запишется так (11)
где Iи I-соответственно алгебраические суммы макротоков и микротоков, охватываемых контуром
8) Соленоид – цилиндрическая катушка, состоящая из большого числа витков, равномерно намотанных на сердечник.
Длина соленоида l содержит N витков и по нему протекает ток I. Считаем соленоид бесконечно длинным. Эксперимент показал, что внутри соленоида поле однородно, а вне соленоида не однородно и очень слабое (можно считать, равным нулю).
Циркуляция вектора В по замкнутому контуру, совпадающему с одной из линий магнитной индукции, охватывающему все N витков, согласно равна:
Тороид можно рассматривать как длинный соленоид, свернутый в кольцо
, (4.15)
или , (4.16)
где В – индукция магнитного поля внутри соленоида; – число витков на единицу длины соленоида.
9) Потокосцепление (полный магнитный поток) — физическая величина, представляющая собой суммарный магнитный поток, сцепляющийся со всеми витками катушки индуктивности.
Потокосцепление численно равно сумме магнитных потоков, проходящих через каждый виток катушки, т.е. при количестве витков N и одинаковом магнитном потоке в каждом витке потокосцепление можно определить как где — магнитный поток одного витка
Распределение магнитных потоков по обмотке соленоида
В идеальном соленоиде все магнитные силовые линии проходят через каждый виток (т.е. не пересекают боковую поверхность соленоида), и, следовательно, магнитный поток каждого витка одинаков. Однако на практике магнитные потоки в витках катушки отличаются и величина потокосцепления определяется по формуле:
где:
— количество витков;
— номер витка, с которым сцеплен поток
Билет № 10
1) Электромагнитная индукция — явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него. электродвижущая сила, возникающая в замкнутом проводящем контуре, пропорциональна скорости изменения магнитного потока через поверхность, ограниченную этим контуром. Величина электродвижущей силы (ЭДС) не зависит от того, что является причиной изменения потока — изменение самого магнитного поля или движение контура (или его части) в магнитном поле. Электрический ток, вызванный этой ЭДС, называется индукционным током.
Согласно закону электромагнитной индукции Фарадея
где
— электродвижущая сила, действующая вдоль произвольно выбранного контура,
2) Поток вектора магнитной индукции, пронизывающий площадку S - это величина, равная:
Поток вектора магнитной индукции (магнитный поток) измеряется в веберах (Вб)
Магнитный поток - величина скалярная.
Поток вектора магнитной индукции (магнитный поток) равен числу линий магнитной индукции, проходящих сквозь данную поверхность.
Поток вектора магнитной индукции (магнитный поток) сквозь произвольную замкнутую поверхность равен нулю:
Это теорема Остроградского-Гаусса для магнитного поля.
Она свидетельствует о том, что в природе не существует магнитных зарядов – физических объектов, на которых бы начинались или заканчивались линии магнитной индукции.
3) Теорема Гаусса (закон Гаусса) — один из основных законов электродинамики, входит в систему уравнений Максвелла. Выражает связь (а именно равенство с точностью до постоянного коэффициента) между потоком напряжённости электрического поля сквозь замкнутую поверхность и зарядом в объёме, ограниченном этой поверхностью. Применяется отдельно для вычисления электростатических полей.
4) Рассмотрим контур с током, образованный неподвижными проводами и скользящей по ним подвижной перемычкой длиной l (рис. 2.17). Этот контур находится во внешнем однородном магнитном поле , перпендикулярном к плоскости контура. При показанном на рисунке направлении тока I, вектор сонаправлен с .
Рис. 2.17
На элемент тока I (подвижный провод) длиной l действует сила Ампера, направленная вправо:
Пусть проводник l переместится параллельно самому себе на расстояние dx. При этом совершится работа:
Итак,
, | (2.9.1) |
Работа, совершаемая проводником с током при перемещении, численно равна произведению тока на магнитный поток, пересечённый этим проводником.
Формула остаётся справедливой, если проводник любой формы движется под любым углом к линиям вектора магнитной индукции.
5) Как известно, электрические токи порождают вокруг себя магнитное поле. Связь магнитного поля с током дала толчок к многочисленным попыткам возбудить ток в контуре с помощью магнитного поля. Эта фундаментальное открытие было блестяще сделано в 1831 г. английским физиком М. Фарадеем, который открыл явленение электромагнитной индукции. Оно говорит о том, что в замкнутом проводящем контуре при изменении потока магнитной индукции, охватываемого этим контуром, возникает электрический ток, получивший название индукционного.
Пример== Концы одной из катушек, которая вставлена одна в другую, присоединяются к гальванометру, а через другую катушку пропускается ток. В моменты включения или выключения тока наблюдается отклонение стрелки гальванометра, а также в моменты его уменьшения или увеличения, а также при перемещении катушек друг относительно друга (рис. 1б). Направления отклонений стрелки гальванометра также имею противоположные направления при включении или выключении тока, его увеличении или уменьшении, приближении или удалении катушек.
6) При изменении магнитного потока через поверхность S, опирающуюся на замкнутый проводящий контур, в нем возникает э.д.с.
электромагнитной индукции
eи = - = -
Это - закон Фарадея.
Э.д.с. электромагнитной индукции возникает за счет сил Лоренца, если проводник движется в магнитном поле, пересекая линии , или за счет возникновения вихревого электрического поля, если меняется само магнитное поле . Правило Ленца: э.д.с. электромагнитной индукции создает в замкнутом проводнике индукционный ток, текущий в таком направлении, что порождаемый этим током магнитный поток стремится скомпенсировать изменение первоначального магнитного потока. Иначе говоря, э.д.с. индукции противодействует изменению магнитного потока, являющегося причиной ее возникновения.
7) Явление электромагнитной индукции применяется для преобразования механической энергии в энергию электрического тока. Для этой цели используютсягенераторы,принцип действия которых можно рассмотреть на примере плоской рамки, вращающейся в однородном магнитном поле (рис. 180).
Предположим, что рамка вращается в однородном магнитном поле (B=const)равномерно с угловой скоростью w=const. Магнитный поток, сцепленный с рамкой площадью S, в любой момент времени t, согласно (120.1), равен
где a = wt — угол поворота рамки в момент времени t (начало отсчета выбрано так, чтобы при t=0 было a=0).
При вращении рамки в ней будет возникать переменная э.д.с. индукции (см. (123.2))
(124.1)
изменяющаяся со временем по гармоническому закону. При sinwt = l э.д.с. максимальна, т. е.
8) Электрический ток, который течет в замкнутом контуре, создает вокруг себя магнитное поле, индукция которого, согласно закону Био-Савара-Лапласа, пропорциональна току. Сцепленный с контуром магнитный поток Ф поэтому прямо пропорционален току I в контуре:
(1)
где коэффициент пропорциональности L называется индуктивностью контура.
При изменении в контуре силы тока будет также изменяться и сцепленный с ним магнитный поток; значит, в контуре будет индуцироваться э.д.с. Возникновение э.д.с. индукции в проводящем контуре при изменении в нем силы тока называется самоиндукцией.
9) Самоиндукция — это явление возникновения ЭДС индукции в проводящем контуре [1]при изменении протекающего через контур тока.
При изменении тока в контуре пропорционально меняется и магнитный поток через поверхность, ограниченную этим контуром. Изменение этого магнитного потока, в силу закона электромагнитной индукции приводит к возбуждению в этом контуре индуктивной ЭДС.
Это явление и называется самоиндукцией. (Понятие родственно понятию взаимоиндукции. являясь как бы его частным случаем).
Направление ЭДС самоиндукции всегда оказывается таким, что при возрастании тока в цепи ЭДС самоиндукции препятствует этому возрастанию (направлена против тока), а при убывании тока — убыванию (сонаправлена с током). Этим свойством ЭДС самоиндукции сходна с силой инерции.
Величина ЭДС самоиндукции пропорциональна скорости изменения силы тока :
.
Коэффициент пропорциональности называется коэффициентом индукции или индуктивностью контура (катушки).
10) При любом изменении силы тока в проводящем контуре возникает э.д.с. самоиндукции, после чего в контуре появляются дополнительные токи, называемые экстратоками самоиндукции. Экстратоки самоиндукции, по правилу Ленца, всегда имеют такое направление, чтобы оказывать сопротивление изменениям тока в цепи, т. е. имеет направление, противоположное току, создаваемому источником. При выключении источника тока экстратоки так же направлены, как и ослабевающий ток. Значит, наличие индуктивности в цепи приводит к замедлению исчезновения или установления тока в цепи.
11) Возьмем два контура, расположенные недалеко друг от друга, как это показано на рисунке 5.4.
Рис. 5.4
В первом контуре течет ток . Он создает магнитный поток, который пронизывает и витки второго контура.
, | (5.3.1) |
При изменении тока во втором контуре наводится ЭДС индукции:
, | (5.3.2) |
Аналогично, ток второго контура создает магнитный поток, пронизывающий первый контур:
, | (5.3.3) |
И при изменении тока наводится ЭДС:
, | (5.3.4) |
Контуры называются связанными, а явление – взаимной индукцией. Коэффициенты и называются взаимной индуктивностью, или коэффициентами взаимной индукции. Причём
Трансформатор является типичным примером двух связанных контуров. Рассмотрим индуктивность трансформатора и найдем коэффициент трансформации.
12 ) Трансформатор (от лат. transformo — преобразовывать) — это статическое электромагнитное устройство, имеющее две или более индуктивно связанных обмоток на каком-либо магнитопроводе и предназначенное для преобразования посредством электромагнитной индукции одной или нескольких систем (напряжений) переменного тока в одну или несколько других систем (напряжений) переменного тока без изменения частоты системы (напряжения) переменного тока (ГОСТ 16110-82).
Трансформатор осуществляет преобразование напряжения переменного тока и/или гальваническую развязку в самых различных областях применения — электроэнергетике, электронике и радиотехнике.
13) Магнитное поле обладает энергией. Подобно тому, как в заряженном конденсаторе имеется запас электрической энергии, в катушке, по виткам которой протекает ток, имеется запас магнитной энергии.
Если включить электрическую лампу параллельно катушке с большой индуктивностью в электрическую цепь постоянного тока, то при размыкании ключа наблюдается кратковременная вспышка лампы. Ток в цепи возникает под действием ЭДС самоиндукции. Источником энергии, выделяющейся при этом в электрической цепи, является магнитное поле катушки.