Внутренняя энергия моля твердого тела
где NA — постоянная Авогадро; NAk=R (R — молярная газовая постоянная). Молярная теплоемкость твердого тела
Т. е. молярная (атомная) теплоемкость химически простых тел в кристаллическом
Состоянии одинакова (равна 3R) и не зависит от температуры. Этот закон был эмпирически получен французскими учеными П. Дюлонгом (1785—1838) и Л. Пти (1791—1820) и носит название закона Дюлонга и Пти.
Если твердое тело является химическим соединением (например, NaCl), то число частиц в моле не равно постоянной Авогадро, а равно nNA, где n — число атомов в молекуле (для NaCl число частиц в моле равно 2NA, так, в одном моле NaCl содержится NA атомов Na и NA атомов Cl). Таким образом, молярная теплоемкость твердых химических соединений
Т. е. равна сумме атомных теплоемкостей элементов, составляющих это соединение.
Как показывают опытные данные (табл. 4), для многих веществ закон Дюлонга и Пти выполняется с довольно хорошим приближением, хотя некоторые вещества (С, Be, В) имеют значительные отклонения от вычисленных теплоемкостей. Кроме того, так же как и в случае газов, опыты по измерению теплоемкости твердых тел при низких температурах показали, что она зависит от температуры. Вблизи нуля кельвин теплоемкость тел пропорциональна Т3, и только при достаточно высоких температурах, характерных для каждого вещества, выполняется условие. Алмаз, например, имеет теплоемкость, равную 3R при1800 К! Однако для большинства твердых тел комнатная температура является уже достаточно высокой.
Расхождение опытных и теоретических значений теплоемкостей, вычисленных на основе классической теории, объяснили, исходя из квантовой теории теплоемкостей, А. Эйнштейн и П. Дебай.
№2.24
Плавление — переход тела из кристаллического твёрдого состояния в жидкое. Плавление происходит с поглощением удельной теплоты плавления и является фазовым переходом первого рода. Полиморфизм кристаллов— способность вещества существовать в различных кристаллических структурах, называемых полиморфными модификациями (их принято обозначать греческими буквами α, β, γ и т. д.) Аморфные вещества не имеют кристаллической структуры и в отличие от кристаллов не расщепляются с образованием кристаллических граней, как правило — изотропны, то есть не обнаруживают различных свойств в разных направлениях, не имеют определенной точки плавления. Стекло — твердотельное состояние аморфных веществ. Аморфные вещества могут находиться либо в стеклообразном состоянии (при низких температурах), либо в состоянии расплава (при высоких температурах). Аморфные вещества переходят в стеклообразное состояние при температурах ниже температуры стеклования T. При температурах свыше T, аморфные вещества ведут себя как расплавы, то есть находятся в расплавленном состоянии. Вязкость аморфных материалов — непрерывная функция температуры: чем выше температура, тем ниже вязкость аморфного вещества.
Плавлением называют процесс перехода вещества из твердого кристаллического состояния в жидкое. Плавление происходит при постоянной температуре с поглощением тепла. Постоянство температуры объясняется тем, что при плавлении вся подводимая теплота идет на разупорядочение регулярного пространственного расположения атомов (молекул) в кристаллической решетке. При этом среднее расстояние между атомами и, следовательно, силы взаимодействия изменяется незначительно. Температура плавления для данного кристалла ? его важная характеристика, но она не является величиной постоянной, а существенным образом зависит от внешнего давления, при котором происходит плавление. Для большинства кристаллов (кроме воды, и некоторых сплавов) температура плавления растет с увеличением внешнего давления, так как для отдаления атомов друг от друга при большем давлении требуется большая энергия тепловых движений, т. е. Более высокая температура.
На рис. 1 представлена зависимость температуры нагреваемого кристалла от времени.
рис. 1
На участке 12 происходит нагревание кристалла. При достижении температуры tпл вся поступающая теплота идет на плавление кристалла (участок 23), нагревания его не происходит.
Количество теплоты qпл, необходимое для превращения одного моля кристалла в жидкое состояние при постоянной температуре плавления, называют молярной скрытой теплотой плавления. Каждому кристаллу присуща своя величина теплоты плавления.
Отметим, что усиление или ослабление подвода тепла на участке 23 вызывает только ускорение или замедление процесса плавления, не изменяя величины tпл. Если прекратить подвод тепла, то останавливается и процесс плавления, т. е. Двухфазной системе жидкость?кристалл устанавливается равновесное состояние, когда числа молекул, переходящих в единицу времени из твердой фазы в жидкую и обратно, равны.
На участке 34 происходит процесс нагревания жидкости. Если в момент времени t0 остановить нагревание жидкости, то возникнет обратный процесс охлаждения жидкости (участок 45). Когда температура достигнет температуры плавления, начнется кристаллизация жидкости (участок 56). Как только процесс кристаллизации заканчивается (точка 6), дальнейший отвод тепла сопровождается понижением температура (участок 67).
В кристалле, как мы знаем, каждая молекула совершает только колебательное движение, тогда как в жидкости она совершает еще и поступательное движение. Поэтому при кристаллизации от вещества необходимо отводить тепловую энергию, соответствующую поступательному движению молекул. Молекулы, утратившие этот излишек энергии, присоединяются к кристаллам.
У аморфных тел изменение температуры со временем (пунктирная кривая на рис. 5.3.1) не имеет участка с постоянной температурой, а только точку перегиба (8 или 9). Увеличение температуры твердого аморфного тела сопровождается непрерывным уменьшением его вязкости. У аморфных тел нельзя указать такую определенную температуру, выше которой можно было бы констатировать жидкое состояние, а ниже ? твердое состояние. Выделяется только температура, соответствующая точке перегиба. Эту температуру условно называют температурой размягчения аморфных тел.
№2.25
Сплав: материал, состоящий из кристаллов различных компонентов раствора. Твёрдые растворы делятся:замещение, внедрение, вычитание. Первичной кристаллизацией называется образование кристаллов в металлах (и сплавах) при переходе из жидкого состояния в твердое. Кристаллизация начинается при достижении некоторого предельного условия, например, переохлаждения жидкости, когда практически мгновенно возникает множество мелких кристалликов — центров кристаллизации. Твердые растворы - фазы переменного состава, в которых атомы различных элементов расположены в общей кристаллической решетке. Эвтектика — жидкая система (раствор или расплав), находящаяся при данном давлении в равновесии с твёрдыми фазами, число которых равно числу компонентов системы.
По способу изготовления сплавов различают литые и порошковые сплавы. Литые сплавы получают кристаллизацией расплава смешанных компонентов. Порошковые — прессованием смеси порошков с последующим спеканием при высокой температуре. Компонентами порошкового сплава могут быть не только порошки простых веществ, но и порошки химических соединений. Например, основными компонентами твёрдых сплавов являются карбиды вольфрама или титана.
По способу получения заготовки (изделия) различают литейные (например, чугуны, силумины), деформируемые (например, стали) и порошковые сплавы.
В твердом агрегатном состоянии сплав может быть гомогенным (однородным, однофазным — состоит из кристаллитов одного типа) и гетерогенным (неоднородным, многофазным).Твёрдый раствор является основой сплава (матричная фаза). Фазовый состав гетерогенного сплава зависит от его химического состава. В сплаве могут присутствовать: твердые растворы внедрения, твердые растворы замещения, химических соединений(в том числе карбиды, нитриды, интерметаллиды …) и кристаллиты простых веществ.
Свойства металлов и сплавов полностью определяются их структурой (кристаллической структурой фаз и микроструктурой). Макроскопические свойства сплавов определяются микроструктурой и всегда отличаются от свойств их фаз, которые зависят только от кристаллической структуры. Макроскопическая однородность многофазных (гетерогенных) сплавов достигается за счёт равномерного распределения фаз в металлической матрице. Сплавы проявляют металлические свойства, например: электропроводность и теплопроводность, отражательную способность (металлический блеск) и пластичность. Важнейшей характеристикой сплавов является свариваемость.
Твердые растворы, однородные (гомогенные) кристаллич. фазы переменного состава; образуются в двойных или многокомпонентных системах. Если компоненты системы неограниченно растворимы друг в друге, они образуют непрерывный ряд твердых растворов. Чаще, однако, концентрация растворенного вещества не может превышать некоторое предельное значение и существование твердых растворов ограничено некоторыми областями составов (области гомогенности). Твердыми растворами являются многие металлические сплавы и неметаллические системы - минералы, стекла, полупроводники, ферриты.
Типы твердых растворов В твердых растворах замещения растворенное вещество замещает исходное - атом на атом, ион на ион или молекула на молекулу. При этом число частиц (атомов, молекул) в элементарной кристаллич. ячейке остается постоянным. Один из важнейших факторов, определяющих возможность образования твердых растворов замещения,-это размеры замещающих друг друга атомов (ионов, молекул). Согласно правилу Гольдшмидта, для образования широких по составу областей гомогенности твердых растворов при температурах, далеких от температур плавления компонентов, разница Dr в ионных радиусах замещающих друг друга ионов не должна превышать 15%, т.е. отношение Dr/r 15% (r-меньший радиус). Аналогичное правило 15%-ного различия атомных диаметров для твердых растворов металлов и ковалентных веществ было установлено В. Юм-Розери (1934). В настоящее время чаще используется др. размерный фактор-межатомное расстояние R. Для хим. соединения с преим. ионной связью непрерывные твердые растворы замещения образуются при всех температурах, если DR/R < 4 — 5% (А. С. Поваренных, 1964). Если DR/R лежит в пределах от 15 до 20-25%, то даже при высоких температурах образуются только ограниченные Т. р., а при DR/R > 20-25% заметное взаимное растворение отсутствует. Используют и др. размерные факторы: параметры кристаллич. решетки, молярные объемы и т.п. При этом роль размерных факторов зависит от типа хим. связи. Чем сложнее хим. соед., тем, как правило, шире области гомогенности твердых растворов замещения. В случае молекулярных кристаллов, в частности органических, возможность образования Т. р. замещения определяется не только размером, но и конфигурацией молекул.