Классификация измерительных сигналов
ДЕ 1. Теоретические основы метрологии
Измерительные сигналы
1. Классификация измерительных сигналов (аналоговые, дискретные, цифровые и .т.д.) и помех (по месту возникновения, по основным свойствам и др).
2. Математические модели элементарных измерительных сигналов.
Классификация измерительных сигналов
Сигналом называется материальный носитель информации, представляющий собой некоторый физический процесс, один из параметров которого функционально связан с измеряемой физической величиной. Такой параметр называют информативным.
Измерительный сигнал — это сигнал, содержащий количественную информацию об измеряемой физической величине. Их классификация по различным признакам приведена на рис. 1.
Рис. 1. Классификация измерительных сигналов
По характеру измерения информативного и временного параметров измерительные сигналы делятся на аналоговые, дискретные и цифровые.
Аналоговый сигнал — это сигнал, изменяющейся непрерывно во времени и могут принимать любые значения на некотором интервале. Аналоговые сигналы описываются некоторой математической функцией времени. Пример АС — гармонический сигнал — s(t) = A·cos(ω·t + φ).
Дискретный сигнал — это сигнал, который представляется в виде последовательности значений, взятых в дискретные моменты времени. Эти значения называются отсчётами. Δt называется интервалом дискретизации.
Цифровые сигналы — квантованные по уровню и дискретные по времени сигналы Yц(nT), которые описываются квантованными решетчатыми функциями (квантованными последовательностями), принимающими в дискретные моменты времени nТ лишь конечный ряд дискретных значений — уровней квантования h1, h2,..., hn (рис. 2, в).
Квантованный сигнал. При квантовании вся область значений сигнала разбивается на уровни, количество которых должно быть представлено в числах заданной разрядности. Расстояния между этими уровнями называется шагом квантования Δ.
Цифровые сигналы — квантованные по уровню и дискретные по времени сигналы. На каждом заданном промежутке времени известно приближённое (квантованное) значение сигнала, которое можно записать целым числом. Если записать эти целые числа в двоичной системе, получится последовательность нулей и единиц, которая и будет являться цифровым сигналом.
По характеру изменения во времени сигналы делятся на постоянные, значения которых с течением времени не изменяются, и переменные, значения которых меняются во времени. Постоянные сигналы являются наиболее простым видом измерительных сигналов.
Переменные сигналы могут быть непрерывными во времени и импульсными. Непрерывным называется сигнал, параметры которого изменяются непрерывно. Импульсный сигнал — это сигнал конечной энергии, существенно отличный от нуля в течение ограниченного интервала времени, соизмеримого с временем завершения переходного процесса в системе, для воздействия на которую этот сигнал предназначен.
По степени наличия априорной информации переменные измерительные сигналы делятся на детерминированные, квазидетерминированные и случайные.
Детерминированный сигнал — это сигнал, закон изменения которого известен, а модель не содержит неизвестных параметров. Мгновенные значения детерминированного сигнала известны в любой момент времени. Детерминированными (с известной степенью точности) являются сигналы на выходе мер. Например, выходной сигнал генератора низкочастотного синусоидального сигнала характеризуется значениями амплитуды и частоты, которые установлены на его органах управления. Погрешности установки этих параметров определяются метрологическими характеристиками генератора.
Квазидетерминированные сигналы — это сигналы с частично известным характером изменения во времени, т.е. с одним или несколькими неизвестными параметрами. Они наиболее интересны с точки зрения метрологии. Подавляющее большинство измерительных сигналов являются квазидетерминированными.
Детерминированные и квазидетерминированные сигналыделятся на элементарные, описываемые простейшими математическими формулами, и сложные. К элементарным относятся постоянный и гармонический сигналы, а также сигналы, описываемые единичной и дельта-функцией. К сложным сигналам относятся импульсные и модулированные сигналы.
Сигналы могут быть периодическими и непериодическими. Непериодические сигналы делятся на почти периодические и переходные. Почти периодическим называется сигнал, значения которого приближенно повторяются при добавлении к временному аргументу надлежащим образом выбранного числа — почти периода. Периодический сигнал является частным случаем таких сигналов. Почти периодические функции получаются в результате сложения периодических функций с несоизмеримыми периодами. Переходные сигналы описывают переходные процессы в физических системах.
Периодическим называется сигнал, мгновенные значения которого повторяются через постоянный интервал времени. Период T сигнала — параметр, равный наименьшему такому интервалу времени. Частота f периодического сигнала — величина, обратная периоду. Периодический сигнал характеризуется спектром. Различают три вида спектра:
• комплексный — комплексная функция дискретного аргумента, кратного целому числу значений частоты ω периодического сигнала Y (t), представляющая собой значения коэффициентов комплексного ряда Фурье:
где k — любое целое число;
• амплитудный— функция дискретного аргумента, представляющая собой модуль комплексного спектра периодического сигнала:
где Re(z), Im(z) — действительная и мнимая части комплексного числа z;
• фазовый — функция дискретного аргумента, представляющая собой аргумент комплексного спектра периодического сигнала:
Периодической сигнал содержит ряд гармоник. Гармоника — гармонический сигнал с амплитудой и начальной фазой, равными соответствующим значениям амплитудного и фазового спектра периодического сигнала при некотором значении аргумента. Наличие высших гармоник в спектре периодического сигнала количественно описывается коэффициентом гармоник, характеризующим отличие формы данного периодического сигнала от гармонической (синусоидальной). Он равен отношению среднеквадратического значения сигнала суммы всех его гармоник, кроме первой, к среднеквадратическому значению первой гармоники:
где Y,, У, — i-я и первая гармоники сигнала Y (t).
Периодические сигналы бывают гармоническими, т. е. содержащими только одну гармонику, и полигармоническими, спектр которых состоит из множества гармонических составляющих. К гармоническим сигналам относятся сигналы, описываемые функцией синуса или косинуса. Все остальные сигналы являются полигармоническими.
Случайный сигнал — это изменяющаяся во времени физическая величина, мгновенное значение которой является случайной величиной.
Эргодическим называется сигнал, вероятностные характеристики которого не зависят от номера реализации.
Классификация помех
Измерительные сигналы редко присутствуют в средствах измерений в чистом виде. Практически всегда на них накладываются помехи.
Под помехой понимается сигнал, однородный с измерительным и действующий одновременно с ним. Его присутствие приводит к появлению погрешности измерения. Классификация помех возможна по ряду признаков.
По месту возникновенияпомехи делятся на внешние и внутренние. Причиной возникновения внешних помех являются природные процессы и работа различных технических устройств. Последние создают так называемые индустриальные помехи. Внутренние помехи обусловлены процессами, происходящими при работе самого средства измерений.
В зависимости от вида включения источников помехи и измерительного сигнала в эквивалентных схемах средств измерений различают помехи общего вида (синфазные) и помехи нормального (последовательные) вида.
Источник помехи общего вида включен между общими точками (корпусами) схем объекта измерений и СИ. Источник помехи нормального вида включен последовательно во входную цепь СИ.
По виду частотного спектра помехи делятся на белый и розовый шумы. Спектральные составляющие белого шума равномерно распределены по всему частотному диапазону. У розового шума спектральная мощность, приходящаяся на декаду частоты, постоянна.
По основным свойствам помехи можно разделить на три вида: флуктуационные, сосредоточенные и импульсные.
Флуктуационные помехи представляют собой хаотическое, беспорядочное изменение во времени сигнала, однородного с измеряемым, в каком-либо месте средства измерений. Такие помехи часто называют шумом.
Пример — внутренние шумы измерительных электронных усилителей. Различают следующие виды шумов:
• тепловой (шум Джонсона), по своим свойствам близкий кбелому шуму. Тепловой шум генерируется любым резистором, находящимся в измерительной цепи. Значение его состоит в том, что он устанавливает нижнюю границу напряжения шумов любого измерительного преобразователя, имеющего выходное сопротивление;
• дробовый, обусловленный движением электронов — дискретных носителей электрического тока. Он имеет равномерный спектр, т. е. является белым;
• фликкер-шум. К данному виду относят шумы, у которых спектральная мощность на декаду частоты примерно постоянна, т. е. розовые шумы, например шум постоянного резистора, пропорциональный протекающему через него току, шум тока базы транзистора и др.
Влияние флуктуационной помехи уменьшается при усреднении суммы измерительного сигнала и помехи. Максимальное уменьшение влияния флуктуационной помехи на результат измерения возможно в том случае, когда спектральная плотность помехи постоянна в пределах полосы пропускания средства измерений, т.е. помеха имеет характер белого шума.
Сосредоточенными называют помехи, основная часть мощности которых сосредоточена на отдельных участках диапазона частот, меньших полосы пропускания СИ. Помехи, наводимые в измерительных цепях СИ от промышленной силовой сети частотой 50 Гц, являются сосредоточенными. Эффективность их подавления в значительной мере определяется достоверностью априорных данных о частотном спектре.
Импульсными помехами называется регулярная или хаотическая последовательность импульсных сигналов, однородных с измерительным сигналом. Источниками таких помех являются цифровые и коммутируюшие элементы СИ или работающего рядом с ними устройства. Характерный пример импульсных помех — помехи от устройств зажигания двигателей внутреннего сгорания. Импульсные и сосредоточенные помехи часто называют наводками.
Поскольку основным следствием действия помехи является появление погрешности измерения, то стараются устранить или, по крайней мере, ослабить их действие на средства измерений. Для устранения влияния помех целесообразно, если это возможно, исключить причины их возникновения. Способы борьбы с помехами в значительной мере зависят от их спектрального состава, вида измерительного сигнала и помехи.