Схема 42. Структурные уровни организации материи в рамках современной химии.
Для наглядности приведём понятийные определения химических систем (см. схему 43) в рамках концепции целостности и единства реагентов и продуктов реакции.
Схема 43. Химические системы.
v Атом – электронейтральная система взаимодействующих элементарных частиц, состоящая из ядра (образованного протонами и нейтронами) и электронов. |
v Молекула – электронейтральная наименьшая совокупность атомов, образующих определённую структуру посредством химических связей. |
v Химический элемент – совокупность атомов (изотопов) с одинаковым зарядом Z ядра. |
v Химическое соединение. Вещество, которое состоит из атомов в определенном отношении и объединённых определённой химической связью, является химическим соединением. Химические соединения подразделяют на неорганические – соединения всех элементов периодической системы, и органические – соединения углерода и некоторых других элементов, в которых атомы углерода соединены между собой в цепи. |
v Дальтониды - вещества постоянного состава. |
v Бертоллиды - вещества переменного состава. |
v Мономер - вещество, молекулы которого способны реагировать между собой или с молекулами других веществ, образуя полимер. |
v Полимер - вещества, молекулы (макромолекулы) которых состоят из большого числа звеньев. Полимеризация – процесс или синтез получения полимеров. |
v Химическая формула. Отражает состав, (структуру) вещества в виде химического соединения. Молекулярная формула указывает число атомов химического элемента в молекуле. Структурная (графическая) формула отражает порядок соединения атомов в молекуле и число связей между атомами. |
v Химическая реакция - превращение веществ, сопровождающееся изменением их состава и (или) строения. Записывается схематически с помощью формул реагентов и продуктов реакции. |
v Реакционная способность элемента - это активность в химических реакциях, которая определяется количеством электронов на внешних оболочках атома. |
Рассмотрим фрагментарно основные концептуально-конструктивные уровни (разделы) современной химии, в рамках которых мы более детально раскроем и структурные уровни организации материи в химии. Среди фундаментальных полей взаимодействия в химии доминирует электромагнитное взаимодействие, хотя в эволюции материи в форме вещества важную роль играли и играют все фундаментальные поля взаимодействия и, следовательно, современная физическая исследовательская программа – единая теория поля. Однако, особая роль в химии принадлежит квантовой физике.
Структурно-концептуальные разделы современной химии
Химические явления протекают в системах, плохо обусловленных: в них действует одновременно множество сложным образом изменяющихся факторов. Указанное обстоятельство привело к тому, что в химической теории выработано множество частных моделей, применимость которых ограничена узкими рамками конкретных условий проведения реакций. Это создает в целом пёструю, фрагментарную картину теоретической химии.
Однако, существует возможность краткого анализа основных химических моделей в рамках четырех структурно-концептуальных разделов современной химии, а именно: учения о составе, структурной химии, учения о химических процессах и эволюционной химии.
Учение о составе вещества
Учение о составе включает в себя проблемы химического элемента и химического соединения. Первая модель «химического элемента» была введена в XVII в. Р. Бойлем, как предельного “простого вещества”, получаемого при химическом разложении веществ, переходящего без изменения из состава одного сложного тела в состав другого. Однако само открытие химических элементов произошло значительно позже (фосфор был открыт только в 1669 г., кобальт – в 1735г., никель – в 1751 г., водород – в 1766г., фтор – в 1771 г., азот и кислород – в 1772 г. и т.д.).
А.А Лавуазье (в конце XVIII в.) сделал первую попытку в истории химии систематизации химических элементов и соединений.
Д.И. Менделеев открыл периодический закон и разработал Периодическую систему химических элементов (1889 г.). Он исходил из того, что основной характеристикой химических элементов являются их атомные массы. Дальнейшие уточнения показали, что место химического элемента в Периодической системе определяется не атомной массой, а зарядом атомного ядра. В этой связи можно утверждать, что химический элемент – это совокупность атомов (изотопов), обладающих одинаковым зарядом ядра. Каждый химический элемент имеет определённую массу, представляющую собой среднее значение масс всех его изотопов. Изотопы, с точки зрения радиационной химии – разновидности атомов данного химического элемента, обладающие одинаковым зарядом ядра, но различающиеся массой. Во времена Д.И. Менделеева было известно 62 химических элемента, сейчас – более 114.
Периодический закон формулируется следующим образом: химические свойства простых веществ, а также формы и свойства соединений элементов находятся в периодической зависимости от величины заряда ядра атома (порядкового номера). Исключение – изотопы водорода: протий, тритий, дейтерий, обладающие различными химическими свойствами.
В периодической системе по горизонтали имеется семь периодов (обозначены арабскими цифрами), из них первый, второй и третий называются малыми, а остальные – большими. Каждый период за исключение первого начинается щелочным металлом и заканчивается благородным газом (седьмой период – незаконченный). В системе 10 рядов (обозначены римскими цифрами). Каждый малый период состоит из одного ряда, каждый большой – из двух рядов: четного (верхнего) и нечетного (нижнего). В четных рядах больших периодов находятся металлы. По вертикали расположено восемь групп (обозначены римскими цифрами). Номер группы связан со степенью окисления элементов, проявляемой ими в соединениях. Каждая группа делится на две подгруппы, причем главную подгруппу начинает элемент малого периода или первый элемент группы. В побочную группу входят элементы только больших периодов. VIII группа отличается от остальных: кроме главной подгруппы гелия она содержит побочную подгруппу, состоящую из триад железа, рутения осмия.
В настоящее время раскрыт физико-химический смысл периодического закона, и дано квантово-механическое объяснение строения атомов химических элементов на основе понятия электронной оболочки квантовых чисел и принципа Паули (см. схемы 35, 36 в лекции 4).
Все свойства элементов таблицы Д.И. Менделеева объясняются порядком заполнения электронами энергетических уровней (оболочек) и подуровней (подоболочек) атомов. Каждый период начинается элементом, в атоме которого на внешней электронной оболочке находится s-электрон. Завершаются периоды благородными газами, атомы которых имеют полностью заполненную внешнюю оболочку. Номер группы, как правило, указывает число электронов, которые могут участвовать в образовании химических связей.
В начале XIX в. Ж. Пруст сформулировал закон постоянства состава: любое индивидуальное химическое соединение обладает строго определённым неизменным составом, прочным притяжением составных частей (атомов) и тем отличается от смесей. Теоретически закон постоянства состава обосновал Д. Дальтон. Возникла модель веществ постоянного состава – дальтониды. На основе идеи об атомистическом строении вещества он утверждал, что химические соединения состоят из атомов двух или нескольких элементов, образующих определённые (он считал кратные) сочетания друг с другом. Возникла стехиометрическая модель химических соединений, а затем и типологии молекул.
К.Л. Бертолле, внёсший совместно с А.А. Лавуазье значительный вклад в номенклатуру химических соединений, считал, что в химии огромная роль принадлежит веществам переменного состава – бертоллидам. С конца XIX в. возобновились исследования, подвергающие сомнению абсолютизацию закона постоянства состава. Результаты исследований показали, что суть проблемы химических соединений состоит не столько в постоянстве состава, сколько в природе химических связей, объединяющих атомы в единую квантово-механическую систему – молекулу. Молекула представляет собой электронейтральную наименьшую совокупность атомов, образующих определённую структуру посредством химических связей.
В результате открытия физической природы химизма, как обменного взаимодействия электронов, химия по-новому стала решать проблему химического соединения, которое определяется как качественно определённое вещество, состоящее из одного или нескольких химических элементов, атомы которых за счёт обменного взаимодействия (химической связи) объединены в химическое соединение, неорганическое или органическое, мономеры или полимеры.
Произошло пересечение («вложение» друг в друга) стехиометрической, атомно-молекулярной, геометрической и электронной моделей химии. С современной точки зрения, стехиометрическая модель означает использование химических формул и уравнений, атомно-молекулярная модель – описание химических реакций как внутри- и межмолекулярных перегруппировок атомов, геометрическая модель определяет язык структурных формул и геометрических молекулярных параметров, а электронная модель выводит реакционную способность веществ из электронного строения молекул. Эти модели “вложены” друг в друга: каждая последующая использует и детализирует постулаты предыдущих.
В рамках современной электронной модели можно дать и краткую характеристику основным типам химических связей (см. схему 44).