Тема 4. Современные концепции химии и биологии

План

1. Химическая картина мира.

2. Структурные уровни организации жизни.

3. Происхождение и сущность жизни.

4. Начало жизни на Земле.

5. Современная теория эволюции.

6. Основы генетики.

Химическая картина мира

Процесс зарождения химической науки был длительным, сложным и противоречивым. Истоки химических знаний лежат в глубокой древности и связаны с потребностью людей получать различные вещества. Происхождение термина «химия» не совсем ясно, но по одной из версий это означает «египетское искусство», по другой - «искусство получения соков растений».

Историю химической науки можно разделить на несколько этапов:

1. Период алхимии - с древности до XVI в.

2.Период зарождения научной химии - XVI-XVII вв.

3.Период открытия основных законов химии - первые 60 лет XIX в.

4.Современный период - с 60-х годов XIX в. до настоящего времени.

Исторически алхимия сложилась как тайное, мистическое знание, направленное на поиски философского камня, превращающего металлы в золото и серебро, и эликсира долголетия. В течение своей многовековой истории алхимия решала многие практические задачи, связанные с получением веществ и заложила фундамент для создания научной химии.

Наивысшего развития алхимия достигла в трех основных типах:

· греко-египетском;

· арабском;

· западно-европейском.

Родиной алхимии был Египет. Еще в древности там были известны способы получения металлов, сплавов, применявшихся для производства монет, оружия, украшений. Эти знания держались в секрете и были достоянием ограниченного круга жрецов. Увеличивающийся спрос на золото подтолкнул металлургов к поиску способов превращения (трансмутации) неблагородных металлов (железа, свинца, меди и др.) в золото. Алхимический характер древней металлургии связал ее с астрологией и магией. Каждый металл имел астрологическую связь с соответствующей планетой. Погоня за философским камнем позволила углубить и расширить знания о химических процессах. Получила развитие металлургия, были усовершенствованы процессы очистки золота и серебра.

Тем не менее, в период правления императора Диоклетиана в Древнем Риме алхимия стала преследоваться. Возможность получения дешевого золота напугала императора и по его приказу были уничтожены все труды по алхимии. Значительную роль в запрете алхимии сыграло христианство, которое рассматривало ее как дьявольское ремесло.

После завоевания арабами Египта в VII в. н. э. алхимия стала развиваться в арабских странах. Самым выдающимся арабским алхимиком был Джабир ибн Хайям, известный в Европе как Гебер. Он описал нашатырный спирт, технологию приготовления свинцовых белил, способ перегонки уксуса для получения уксусной кислоты. Основополагающей идеей Джабира являлась теория образования всех, известных тогда семи металлов из смеси ртути и серы как двух основных составляющих. Эта идея предвосхитила деление простых веществ на металлы и неметаллы.

Развитие арабской алхимии шло двумя параллельными путями. Одни алхимики занимались трансмутацией металлов в золото, другие искали эликсир жизни, дававший бессмертие.

Появление алхимии в странах Западной Европы стало возможным благодаря крестовым походам. Тогда европейцы позаимствовали у арабов научно-практические знания, среди которых была алхимия. Европейская алхимия попала под покровительство астрологии и поэтому приобрела характер тайной науки. Имя самого выдающегося средневекового западноевропейского алхимика осталось неизвестным, известно лишь, что он был испанцем и жил в XIV веке. Он первым описал серную кислоту, процесс образования азотной кислоты, царской водки. Несомненной заслугой европейской алхимии было изучение и получение минеральных кислот, солей, спирта, фосфора и т. д. Алхимиками была создана химическая аппаратура, разработаны различные химические операции: нагревание на прямом огне, водяной бане, прокаливание, перегонка, возгонка, выпаривание, фильтрование, кристаллизация и др. Таким образом, были подготовлены соответствующие условия для развития химической науки.

Период зарождения химической науки охватывает три столетия - с XVI по XIX вв. Условиями становления химии как науки были:

· обновление европейской культуры;

· потребность в новых видах промышленного производства;

· открытие Нового света;

· расширение торговых отношений.

Отделившись от старой алхимии, химия приобрела большую свободу исследования и утвердилась как единая независимая наука.

В XVI в. на смену алхимии пришло новое направление, которое занималось приготовлением лекарств. Это направление получило название ятрохимии. Основателем ятрохимии был швейцарский ученый Теофраст Бомбаст фон Гогенгейм, известный в науке под именем Парацельс. Ятрохимия стремилась соединить медицину с химией, используя препараты нового типа, приготовленные из минералов. Ятрохимия принесла значительную пользу химии, т. к. способствовала освобождению ее от влияния алхимии и заложила научно-практические основы фармакологии.

В XVII столетии, в век бурного развития механики, в связи с изобретением паровой машины, возник интерес химии к процессу горения. Итогом этих исследований стала теория флогистона, основоположником которой был немецкий химик и врач Георг Шталь. Теория флогистона основана на утверждении, что все горючие вещества богаты особым горючим веществом - флогистоном. Чем больше флогистона содержит вещество, тем более оно способно к горению. Металлы тоже содержат флогистон, но теряя его, превращаются в окалину. При нагревании окалины с углем, металл забирает от него флогистон и возрождается. Теория флогистона, несмотря свою на ошибочность, давала приемлемое объяснение процессу выплавки металлов из руд. Необъяснимым оставался вопрос, почему зола и сажа, оставшиеся от сгорания таких веществ, как дерево, бумага, жир, намного легче, чем исходное вещество.

В XVIII в. французский физик Антуан Лоран Лавуазье, нагревая различные вещества в закрытых сосудах, установил, что общая масса всех веществ, участвующих в реакции, остается без изменений. Лавуазье пришел к выводу, что масса веществ никогда не создается и не уничтожается, а лишь переходит от одного вещества к другому. Этот вывод, известный сегодня как закон сохранения массы, стал основой для всего процесса развития химии XIX в.

Продолжая исследования, Лавуазье установил, что воздух является не простым веществом, а смесью газов, пятую часть которого составляет кислород, а остальные 4/5 азот. В это же время английский физик Генри Кэвендиш выделил водород и, сжигая его, получил воду, доказав, что вода - это соединение водорода и кислорода.

Проблема изучения химического состава веществ была главной в развитии химии вплоть до 30-40-х годов XIX в. Английский химик Джон Дальтон открыл закон кратных отношений и создал основы атомной теории. Он установил, что два элемента могут соединяться между собой в разных соотношениях, при этом каждая комбинация представляет собой новое соединение. Дальтон исходил из положения древних атомистов о корпускулярном строении материи, но, основываясь на понятии химического элемента, сформулированном Лавуазье, полагал, что все атомы отдельного элемента одинаковы и характеризуются своим атомным весом. Этот вес относителен, т. к. абсолютный атомный вес атомов определить невозможно. Дальтон составил первую таблицу атомных весов на основе водородной единицы.

Поворотный этап в развитии химической атомистики был связан с именем шведского химика Иенса Якоба Берцелиуса, который изучая состав химических соединений, открыл и доказал закон постоянства состава. Это позволило объединить атомистику Дальтона с молекулярной теорией, которая предполагала существование частиц (молекул), образованных из двух или более атомов и способных перестраиваться при химических реакциях. Заслугой Берцелиуса является введение химической символики, позволяющей обозначать не только элементы, но и химические реакции. Символ элемента обозначался первой буквой его латинского или греческого названия. В случаях, когда названия двух или более элементов начинаются с одной буквы, к ним добавляется вторая буква названия. Эта химическая символика была признана международной и используется в науке до настоящего времени. Берцелиусу также принадлежит идея разделения всех веществ на неорганические и органические.

До середины XIX в. развитие химии происходило беспорядочно и хаотически: открывались и описывались новые химические элементы, химические реакции, благодаря чему накопился огромный эмпирический материал, который требовал систематизации. Логическим завершением всего многовекового процесса развития химии стал первый международный химический конгресс, состоявшийся в сентябре 1860 г. в немецком городе Карлсруэ. На нем были сформулированы и приняты основополагающие принципы, теории и законы химии, которые заявили о химии как о самостоятельной развитой науке. Этот форум, внеся ясность в понятия атомных и молекулярных весов, подготовил условия для открытия периодической системы элементов.

Изучая химические элементы, расположенные в порядке увеличения их атомных весов, Менделеев обратил внимание на периодичность изменения их валентностей. Основываясь на увеличении и уменьшении валентности элементов в соответствии с их атомным весом, Менделеев разделил элементы на периоды. Первый период включает только водород, а затем следуют два периода по семь элементов, а затем периоды, где более семи элементов. Такая форма таблицы была удобной и наглядной, что сделало ее признанной мировым сообществом ученых.

Настоящим триумфом периодической системы стало предсказание свойств еще не открытых химических элементов, под которые в таблице были оставлены пустые клетки. Открытие периодического закона Д. И. Менделевым стало выдающимся событием в химии, приведя ее в состояние стройной систематизированной науки.

Следующим важным этапом в развитие химии явилось создание теории химического строения органических соединений А. М. Бутлеровым, которая утверждала, что свойства веществ зависят от порядка расположения атомов в молекулах и от их взаимного влияния.

На основе системы химических наук складывается химическая картина мира, т. е. взгляд на природу с точки зрения химии. Ее содержанием являются:

1. Учение о химической организации объектов живой и неживой природы.

2. Представление о происхождении всех основных типов природных объектов, их естественной эволюции.

3. Зависимость химических свойств природных объектов от их структуры.

4. Закономерности природных процессов как процессов химического движения.

5. Знание о специфических свойствах искусственно синтезируемых объектов.

Наши рекомендации