Подключение R-L цепи к источнику постоянной ЭДС
В схеме на рис. 8.3 до коммутации рубильник разомкнут. В результате коммутации рубильник замыкается и подключает R-L цепь к источнику постоянной ЭДС. Определим закон изменения тока i(t).
.
Принужденный ток в установившемся режиме после коммутации
.
В свободном режиме из схемы исключен внешний источник питания. Схема на рис. 8.3 без источника ЭДС ничем не отличается от схемы на рис. 8.1.
Свободный ток определяется по формуле
.
Запишем значение переходного тока для момента коммутации, (t = 0). ,
откуда .
Рис. 8.3
До коммутации рубильник был разомкнут, и ток в схеме отсутствовал.
Сразу после коммутации ток в индуктивности остается равным нулю.
.
.
.
Напряжение на индуктивности
.
На рис. 8.4 изображены кривые переходного, принужденного, свободного токов и переходного напряжения на индуктивности.
Свободный ток и напряжение на индуктивности плавно уменьшаются до нуля. В момент коммутации свободный и принужденный токи одинаковы по абсолютной величине.
Переходный ток начинается при включении с нуля, затем возрастает, приближаясь к установившемуся постоянному значению.
Рис. 8.4
22. Переходные процессы в цепи постоянного при эксплуатации конденсатора.
Короткое замыкание в R-C цепи
В схеме на рис. 8.5 в результате коммутации рубильник замыкается, и образуется замкнутый на себя R-C контур.
До коммутации емкость полностью зарядилась до напряжения, равного ЭДС источника питания, то есть uc(0-) = E. После коммутации емкость полностью разряжается, следовательно, принужденный ток в R-C цепи и принужденное напряжение на конденсаторе равны нулю.
В цепи существует только свободный ток за счет напряжения заряженного конденсатора.
Запишем для R-C контура уравнение по второму закону Кирхгофа .
Рис. 8.5
Ток через конденсатор .
Получим дифференциальное уравнение
. (8.3)
Решение этого уравнения .
Подставим значение свободного напряжения и производной от напряжения
в уравнение (8.3).
.
Уравнение называется характеристическим.
- корень характеристического уравнения;
- постоянная времени переходного процесса;
Переходный ток и переходное напряжение на конденсаторе по показательному закону уменьшаются до нуля (рис. 8.6).
Рис. 8.6
Подключение R-C цепи к источнику постоянной ЭДС
Полагаем, что до коммутации конденсатор не заряжен, напряжение на нем uc(0-)=0.
В результате коммутации рубильник замыкается, и конденсатор полностью заряжается (рис. 8.7).
Принужденное напряжение на емкости равно ЭДС источника питания ucпр= E.
Переходное напряжение
.
В момент коммутации .
Постоянная интегрирования .
В соответствии со вторым законом
коммутации
Рис. 8.7
Переходное напряжение
.
Переходный ток
.
Кривые напряжений и тока
изображены на рис. 8.8.
Рис. 8.8
23. Магнитные цепи с постоянными магнитными потоками. Методы расчёта.
Магнитные цепи
9.1. Основные определения
Как известно из курса физики, вокруг проводника с током появляется магнитное поле. Интенсивность магнитного поля характеризуется векторной величиной: напряженностью магнитного поля , измеряемой в амперах на метр (A/м). Интенсивность магнитного поля характеризуется также вектором магнитной индукции , измеряемой в теслах (Тл). Напряженность магнитного поля не зависит, а магнитная индукция зависит от свойств окружающей среды.
где μ0 - абсолютная магнитная проницаемость, Гн/м;
μ - относительное значение магнитной проницаемости, безразмерная величина;
μ0 = 4π·10-7 Гн/м.
В зависимости от величины относительной магнитной проницаемости, все вещества делятся на три группы.
К первой группе относятся диамагнетики: вещества, у которых μ< 1.
Ко второй группе относятся парамагнетики, вещества с μ >1.
К третьей группе относятся ферромагнетики, вещества с μ >> 1.
К ферромагнетикам принадлежат железо, никель, кобальт и многие сплавы из неферромагнитных веществ.
Магнитной цепью называется совокупность устройств, содержащих ферромагнитные вещества. Процессы в магнитных цепях описываются с помощью понятий магнитодвижущей силы, магнитного потока.
Магнитным потоком называется поток вектора магнитной индукции через поверхность S
.
Магнитный поток измеряется в веберах (Вб).
Источником магнитодвижущей силы является либо постоянный магнит, либо электромагнит (катушка, обтекаемая током).
Магнитодвижущая сила электромагнита
где I - ток, протекающий в катушке;
W - число витков катушки.
В магнитных цепях используется свойство ферромагнитного материала тысячекратно усиливать магнитное поле катушки с током за счет собственной намагниченности.
Расчет магнитных цепей
Основным законом, используемым при расчетах магнитных цепей, является закон полного тока.
(9.1)
Он формулируется следующим образом: линейный интеграл вектора напряженности магнитного поля по замкнутому контуру равен алгебраической сумме токов, охватываемых этим контуром. Если контур интегрирования охватывает катушку с числом витков W, через которую протекает ток I, то алгебраическая сумма токов , где F - магнитодвижущая сила.
Обычно контур интегрирования выбирают таким образом, чтобы он совпадал с силовой линией магнитного поля, тогда векторное произведение в формуле (9.1) можно заменить произведением скалярных величин H·dl. В практических расчетах интеграл заменяют суммой и выбирают отдельные участки магнитной цепи таким образом, чтобы H1, H2, . . . вдоль этих участков можно было считать приблизительно постоянными. При этом (9.1) переходит в
(9.2)
где l1, l2, …, ln - длины участков магнитной цепи;
H1·l1, H2·l2 - магнитные напряжения участков цепи. Магнитным сопротивлением участка магнитной цепи называется отношение магнитного напряжения рассматриваемого участка к магнитному потоку в этом участке
,
где S - площадь поперечного сечения участка магнитной цепи,
l - длина участка.
Рассмотрим расчет магнитной цепи, изображенной на рис. 9.2.
Ферромагнитныймагнитопровод имеет одинаковую площадь поперечного сечения S.
lср - длина средней силовой линии магнитного поля в магнитопроводе;
δ - толщина воздушного зазора.
На магнитопроводе размещена обмотка, по которой протекает ток I.
Рис. 9.2
Прямая задача расчета магнитной цепи заключается в том, что задан магнитный поток Ф и требуется определить магнитодвижущую силу F. Определим магнитную индукцию в магнитопроводе
.
По кривой намагничивания найдем значение напряженности магнитного поля H, соответствующее величине В.
Напряженность магнитного поля в воздушном зазоре
.
Магнитодвижущая сила обмотки
.
При обратной задаче расчета магнитной цепи по заданному значению магнитодвижущей силы требуется определить магнитный поток. Расчет такой задачи выполняется с помощью магнитной характеристики цепи F = f(Ф).
Для построения такой характеристики необходимо задаться несколькими значениями Ф и найти соответствующие значения F. С помощью магнитной характеристики по заданной магнитодвижущей силе определяется магнитный поток.
24. Магнитные цепи с переменными магнитными потоками. Особенности электромагнитных процессов в катушке с магнитопроводом.