Разрешающая способность спектральной решетки.угловая и линейная дисперсия.
.
. Разрешающей способностью спектрального прибора называют безразмерную величину (16.5)
где — абсолютное значение минимальной разности длин волн двух соседних спектральных линий, при которой эти линии регистрируются раздельно.
Установление длин волн исследуемого излучения в спектральных приборах чаще всего производится путем сравнения длин волн двух близких спектральных линий (одна из которых принадлежит эталонному веществу или излучению). Положение спектральной линии задается углом, определяющим направление лучей.
. Угловой дисперсией спектрального прибора называется величина (16.6) , где —угловое расстояние между двумя линиями (разница в углах на выходе из призмы или решетки для двух лучей с длинами волн и )
. Линейной дисперсией спектрального прибора называется величина (16.7) , где —линейное расстояние между линиями, различающимися по длинам волн на .
40.дисперсия света .нормальная и аномальная дисперсия вещества.
Диспе́рсиясве́та (разложение света) — это явление, обусловленное зависимостью абсолютного показателя преломлениявещества от частоты (или длины волны) света (частотная дисперсия), или, то же самое, зависимость фазовой скорости света в веществе от длины волны (или частоты). Экспериментально открыта Ньютоном около 1672 года, хотя теоретически достаточно хорошо объяснена значительно позднее.
Итак, дисперсия света – это зависимость показателя преломления вещества от частоты световой волны . Эта зависимость не линейная и не монотонная. Области значения ν, в которых
(или ) | (10.2.1) |
соответствуют нормальной дисперсии света(с ростом частоты ν показатель преломления n увеличивается). Нормальная дисперсия наблюдается у веществ, прозрачных для света. Например, обычное стекло прозрачно для видимого света, и в этой области частот наблюдается нормальная дисперсия света в стекле. На основе явления нормальной дисперсии основано «разложение» света стеклянной призмой монохроматоров.
Дисперсия называется аномальной, если
(или ), | (10.2.2) |
т.е. с ростом частоты ν показатель преломления n уменьшается. Аномальная дисперсия наблюдается в областях частот, соответствующих полосам интенсивного поглощения света в данной среде. Например, у обычного стекла в инфракрасной и ультрафиолетовой частях спектра наблюдается аномальная дисперсия.
Зависимости n от ν и λ показаны на рис. 10.4 и 10.5.
Рис. 10.4. | Рис. 10.5 |
В зависимости от характера дисперсии групповая скорость u в веществе может быть как больше, так и меньше фазовой скорости υ (в недиспергирующей среде ).
Групповая скорость u связана с циклической частотой ω и волновым числом k соотношением: , где , . Тогда
. Отсюда можно записать:
. | (10.2.3) |
Таким образом, при нормальной дисперсии u < υ и .
При аномальной дисперсии u > υ, и, в частности, если , то u > c. Этот результат не противоречит специальной теории относительности. Понятие групповой скорости правильно описывает распространение только такого сигнала (волнового пакета), форма которого не изменяется при перемещении сигнала в среде. (Строго говоря, это условие выполняется только для вакуума, т.е. в недиспергирующей среде). В области частот, соответствующих аномальной дисперсии, групповая скорость не совпадает со скоростью сигнала, так как вследствие значительной дисперсии форма сигнала так быстро изменяется, что не имеет смысла говорить о групповой скорости.