Пространственное квантование (магнитное квантовое число).)

Орбитальный момент импульса электрона и пропорциональный ему магнитный момент ориентированы перпендикулярно плоскости орбиты электрона и противоположно направлены.

Пространственное квантование (магнитное квантовое число).) - student2.ru

Пространственное квантование (магнитное квантовое число).) - student2.ru Пространственное квантование (магнитное квантовое число).) - student2.ru Пространственное квантование (магнитное квантовое число).) - student2.ru Между и существует связь:

Пространственное квантование (магнитное квантовое число).) - student2.ru - орбитальное гиромагнитное отношение.

В квантовой механике строго доказывается (это следует из решения уравнения Шредингера), что проекция (Lz) вектора

на направление внешнего поля (z) может принимать лишь целочисленные значения кратные ħ

m = 0, ±1, ±2,…±l – магнитное квантовое число.

l – орбитальное квантовое число,

Таким образом,может принимать (2l + 1) ориентаций в пространстве.

58Пространственное квантование. Магнитное квантовое число. Эффекты Штарка и Зеемана. пространственное квантование приводит к «расщеплению» энергетических уровней на ряд подуровней.

Из решения уравнений Шредингера следует также, что вектор Ll момента импульса электрона может иметь лишь такие ориентации в пространстве, при которых его проекция Llx на направление z внешнего магнитного поля принимает квантованные значения, кратные ћ:

Пространственное квантование (магнитное квантовое число).) - student2.ru (223.6)

где тl — магнитное квантовое число, которое при заданном l может принимать значения

Пространственное квантование (магнитное квантовое число).) - student2.ru (223.7)

т. е. всего 2l+1 значений. Таким образом,магнитное квантовое число ml определяет проекцию момента импульса электрона на заданное направление, причем вектор момента импульса электрона в атоме может иметь в пространстве 2l+1 ориентации.

Наличие квантового числа ml должно привести в магнитном поле к расщеплению уровня с главным квантовым числом п на 2l+1 подуровней. Соответственно в спектре атома должно наблюдаться расщепление спектральных линий. Действительно, расщеп­ление энергетических уровней в магнитном поле было обнаружено в 1896 г. голландс­ким физиком П. Зееманом (1865—1945) и получило названиеэффекта Зеемана. Расщеп­ление уровней энергии во внешнем электрическом поле, тоже доказанное эксперимен­тально, называетсяэффектом Штарка*.

59Спин электрона. Опыт Штерна и Герлаха

О. Штерн и В. Герлах, проводя прямые измерения магнитных моментов обнаружили в что узкий пучок атомов водорода, заведомо находящихся в s-состоянии, в неоднородном магнитном поле расщепляется на два пучка. В этом состоянии момент импульса электрона равен нулю. Магнитный момент атома, связанный с орбитальным движением электрона, пропорционален механичес­кому моменту поэтому он равен нулю и магнитное поле не должно оказывать влияния на движение атомов водорода в основном состоянии, т. е. расщеп­ления быть не должно. Однако в дальнейшем при применении спектральных приборов с большой разрешающей способностью было доказано, что спектральные линии атома водорода обнаруживают тонкую структуру (являются дублетами) даже в отсутствие магнитного поля.

Спин электрона (и всех других микрочастиц) — квантовая величина, у нее нет классического аналога; это внутреннее неотъемлемое свойство электрона, подобное его заряду и массе.

Если электрону приписывается собственный механический момент импульса (спин) Ls, то ему соответствует собственный магнитный момент рms. Согласно общим выво­дам квантовой механики, спин квантуется по закону

Пространственное квантование (магнитное квантовое число).) - student2.ru

где s — спиновое квантовое число.

По аналогии с орбитальным моментом импульса, проекция Lsz спина квантуется так, что вектор Ls может принимать 2s+1 ориентации. Так как в опытах Штерна и Герлаха наблюдались только две ориентации, то 2s+1=2, откуда s= ½ . Проекция спина на направление внешнего магнитного поля, являясь квантованной величиной, определяется выражением, аналогичным (223.6):

Пространственное квантование (магнитное квантовое число).) - student2.ru

где тs — магнитное спиновое квантовое число; оно может иметь только два значения: ms = ± ½ .

60Принципы неразличимости тождественных частиц. Фермионы и бозоны

Пусть квантово-механическая система состоит из одинаковых частиц, например электронов. Все электроны имеют одинаковые физические свойства — массу, электрический заряд, спин и другие внутренние характеристики (например, квантовые числа). Такие частицы называют тождественными.

Необычные свойства системы одинаковых тождественных частиц проявляются в фундаментальном принципе квантовой механики — принципе неразличимости тож­дественных частиц, согласно которому невозможно экспериментально различить тож­дественные частицы.

Следует подчерк­нуть, что принцип неразличимости тождественных частиц не является просто следстви­ем вероятностной интерпретации волновой функции, а вводится в квантовую механику как новый принцип, который, как уже указывалось, является фундаментальным.

Принимая во внимание физический смысл величины |y|2, принцип неразличимости тождественных частиц можно записать в виде

Пространственное квантование (магнитное квантовое число).) - student2.ru (226.1)

где x1 и х2 — соответственно совокупность пространственных и спиновых координат первой и второй частиц. Из выражения (226.1) вытекает, что возможны два случая:

Пространственное квантование (магнитное квантовое число).) - student2.ru

т. е. принцип неразличимости тождественных частиц ведет к определенному свойству симметрии волновой функции. Если при перемене частиц местами волновая функция не меняет знака, то она называется cимметричной, если меняет — антисимметричной. Изменение знака волновой функции не означает изменения состояния, так как физичес­кий смысл имеет лишь квадрат модуля волновой функции. В квантовой механике доказывается, что характер симметрии волновой функции не меняется со временем. Это же является доказательством того, что свойство симметрии или антисиммет­рии — признак данного типа микрочастиц.

Установлено, что симметрия или антисимметрия волновых функций определяется спином частиц. В зависимости от характера симметрии все элементарные частицы и построенные из них системы (атомы, молекулы) делятся на два класса. Частицы с полуцелым спином (например, электроны, протоны, нейтроны) описываются ан­тисимметричными волновыми функциями и подчиняются статистике Ферми — Дира­ка; эти частицы называютсяфермионами. Частицы с нулевым или целочисленным спином (например, p-мезоны, фотоны) описываются симметричными волновыми функ­циями и подчиняются статистике Бозе — Эйнштейна; эти частицы называются бозонами. Сложные частицы (например, атомные ядра), составленные из нечетного числа фермионов, являются фермионами (суммарный спив — полуцелый), а из четно­го — бозонами (суммарный спин целый).

61Принципы Паули. Распределение электронов в атоме по состояниям

Если тождественные частицы имеют одинаковые квантовые числа, то их волновая функция симметрична относительно перестановки частиц. Отсюда следует, что два одинаковых фермиона, входящих в одну систему, не могут находиться в одинаковых состояниях, так как для фермионов волновая функция должна быть антисимметрич­ной. Обобщая опытные данные, В. Паули сформулировал принцип, согласно которому системы фермионов встречаются в природе только в состояниях, описываемых ан­тисимметричными волновыми функциями (квантово-механическая формулировка принципа Паули).

Из этого положения вытекает более простая формулировка принципа Паули, в системе одинаковых фермионов любые два из них не могут одновременно находиться в одном и том же состоянии. Отметим, что число однотипных бозонов, находящихся в одном и том же состоянии, не лимитируется.

Напомним, что состояние электрона в атоме однозначно определяется набором четырех квантовых чисел:

Пространственное квантование (магнитное квантовое число).) - student2.ru

Распределение электронов в атоме подчиняется принципу Паули, который может быть использован в его простейшей формулировке: в одном и том же атоме не может быть более одного электрона с одинаковым набором четырех квантовых чисел п, l, ml и тs т. е.

Пространственное квантование (магнитное квантовое число).) - student2.ru

где Z(п, l, ml, тs) — число электронов, находящихся в квантовом состоянии, описыва­емом набором четырех квантовых чисел: п, l, ml, тs. Таким образом, принцип Паули утверждает, что два электрона, связанные в одном и том же атоме, различаются значениями по крайней мере одного квантового числа.

Согласно формуле (223.8), данному n соответствует n2 различных состояний, от­личающихся значениями l и ml. Квантовое число тs может принимать лишь два значения (± ½). Поэтому максимальное число электронов, находящихся в состояниях, определяемых данным главным квантовым числом, равно

Пространственное квантование (магнитное квантовое число).) - student2.ru

Совокупность электронов в многоэлектронном атоме, имеющих одно и то же главное квантовое число n, называют электронной оболочкой. В каждой из оболочек электроны распределяются поподоболочкам, соответствующим данному l. Поскольку орбитальное квантовое число принимает значения от 0 до n–1, число подоболочек равно порядковому номеру n оболочки. Количество электронов в подоболочке опреде­ляется магнитным и магнитным спиновым квантовыми числами: максимальное число электронов в подоболочке с данным l равно 2(2l+1). Обозначения оболочек, а также распределение электронов по оболочкам и подоболочкам представлены в табл. 6.

62Периодическая система элементов Д.И. Менделеева

Принцип Паули, лежащий в основе систематики заполнения электронных состояний в атомах, позволяет объяснитьПериодическую систему элементов Д. И. Менделеева (1869) —фундаментального закона природы, являющегося основой современной химии, атомной и ядерной физики.

Д. И. Менделеев ввел понятие порядкового номера Z химического элемента, рав­ного числу протонов в ядре и соответственно общему числу электронов в электронной оболочке атома. Расположив химические элементы по мере возрастания порядковых номеров, он получил периодичность в изменении химических свойств элементов. Однако для известных в то время 64 химических элементов некоторые клетки таблицы оказались незаполненными, так как соответствующие им элементы (например, Ga, Se, Ос) тогда еще не были известны. Д. И. Менделеев, таким образом, не только правиль­но расположил известные элементы, но и предсказал существование новых, еще не открытых элементов и их основные свойства. Кроме того, Д. И. Менделееву удалось уточнить атомные веса некоторых элементов. Например, атомные веса Be и U, вычисленные на основе таблицы Менделеева, оказались правильными, а полученные ранее экспериментально — ошибочными.

для объяснения таблицы будем считать, что каждый последующий элемент образован из предыдущего прибавлением к ядру одного прото­на и соответственно прибавлением одного электрона в электронной оболочке атома. Взаимодействием электронов пренебрегаем, внося, где это необходимо, соответст­вующие поправки. Рассмотрим атомы химических элементов, находящиеся в основном состоянии.

s- и p-состояния наружной оболочки заполнены целиком. Криптоном заканчивается IV период Периодической системы. Подобные рассуждения применимы и к остальным элементам таблицы Менделеева, однако эти данные можно найти в справочниках. Отметим лишь, что и начальные элементы последующих периодов Rb, Cs, Fr являются щелочными металлами, а их последний электрон находится в s-состоянии. Кроме того, атомы инертных газов (Не, Ne, Ar, Кr, Хе, Rn) занимают в таблице особое положе­ние — в каждом из них s- и p-состояния наружной оболочки целиком заполнены и ими завершаются очередные периоды Периодической системы.

Каждую из двух групп элементов — лантаниды (от лантана (Z=57) до лютеция (Z=71)) и актиниды (от актиния (Z=89) до лоуренсия (Z=103)) — приходится поме­щать в одну клетку таблицы, таккак химические свойства элементов в пределах этих групп очень близки. Это объясняется тем, что для лантанидов заполнение подоболочки 4f, которая может содержать 14 электронов, начинается лишь после того, как целиком заполнятся подоболочки 5s, 5p и 6s. Поэтому для этих элементов внешняя P-оболочка (6s2) оказывается одинаковой. Аналогично, одинаковой для актинидов является Q-оболочка (7s2).

Таким образом, открытая Менделеевым периодичность в химических свойствах элементов объясняется повторяемостью в структуре внешних оболочек у атомов родственных элементов. Так, инертные газы имеют одинаковые внешние оболочки из 8 электронов (заполненные s- и p-состояния); во внешней оболочке щелочных металлов (Li, Na, К, Rb, Cs, Fr) имеется лишь один s-электрон; во внешней оболочке щелочноземельных металлов (Be, Mg, Ca, Sr, Ba, Ra) имеется два s-электрона; галоиды (F, О, Br, I, At) имеют внешние оболочки, в которых недостает одного электрона до оболочки инертного газа, и т. д.

63Спонтанное и вынужденное излучение. Принцип действия ОКГ

Процесс испускания фотона возбужденным атомом (возбужденной микросистемой) без каких-либо внешних воз­действий называется спонтанным (или самопроизвольным) излучением . Чем больше вероятность спонтанных переходов, тем меньше среднее время жизни атома в возбужденном состоянии. Так как спонтанные переходы взаимно не связаны, то спонтанное излучение некогерентно.

А. Эйнштейн для объяснения наблюдавшегося на опыте термодинамичес­кого равновесия между веществом и испускаемым и поглощаемым им излучением постулировал, что помимо поглощения и спонтанного излучения должен существовать третий, качественно иной тип взаимодействия. Если на атом, находящийся в возбуж­денном состоянии 2, действует внешнее излучение с частотой, удовлетворяющей усло­вию hv=E2–E1, то возникаетвынужденный (индуцированный) переход в основное состояние 1 с излучением фотона той же энергии hv=E2–E1 (рис. 309, в). При подобном переходе происходит излучение атомом фотона, дополнительно к тому фотону, под действием которого произошел переход. Возникающее в результате таких переходов излучение называетсявынужденным (индуцированным) излучением. Таким образом, в процесс вынужденного излучения вовлечены два фотона: первичный фотон, вызыва­ющий испускание излучения возбужденным атомом, и вторичный фотон, испущенный атомом. Существенно, что вторичные фотоны неотличимы от первичных, являясь точной их копией.

64Заряд, масса, размер и состав атомного ядра

атом состоит из положительно заряженного ядра и окружающих его электронов. атомные ядра имеют размеры примерно 10–14 — 10–15 м (линейные размеры атома примерно 10–10 м).

Атомное ядро состоит из элементарных частиц —протонов и нейтронов Протон (р) имеет положительный заряд, равный заряду электрона, и массу покоя тр=1,6726×10–27кг » 1836 тe, где тe — масса электрона. Нейтрон (n) — нейтральная частица с массой покоя тп=1,6749×10–27кг »1839 тe. Протоны и нейтроны называют­сянуклонами (от лат. nucleus — ядро). Общее число нуклонов в атомном ядре называ­ется массовым числом А.

Атомное ядро характеризуется зарядом Ze, гдеZ —зарядовое число ядра, равное числу протонов в ядре и совпадающее с порядковым номером химического элемента в Периодической системе элементов Менделеева. Известные в настоящее время 107 элементов таблицы Менделеева имеют зарядовые числа ядер от Z= 1 до Z= 107.

Ядро обозначается тем же символом, что и нейтральный атом: Пространственное квантование (магнитное квантовое число).) - student2.ru , гдеХ — символхимического элемента, Z атомный номер (число протонов в ядре), А —массовоечисло (число нуклонов в ядре).

Так как атом нейтрален, то заряд ядра определяет и число электронов в атоме. От числа же электронов зависит их распределение по состояниям в атоме, от которого, в свою очередь, зависят химические свойства атома. Следовательно, заряд ядра определяет специфику данного химического элемента, т.е. определяет число электро­нов в атоме, конфигурацию их электронных оболочек, величину и характер внутри­атомного электрического поля.

Ядра с одинаковыми Z, но разными А (т. е. с разными числами нейтронов N=A–Z) называютсяизотопами, а ядра с одинаковыми А, но разными Z—изобарами. Например, водород (Z=1) имеет три изотопа: Пространственное квантование (магнитное квантовое число).) - student2.ru Н—протий (Z=1, N=0), Пространственное квантование (магнитное квантовое число).) - student2.ru Н—дейтерий (Z=1, N=1), Пространственное квантование (магнитное квантовое число).) - student2.ru Н — тритий (Z=1, N=2), олово—десять, и т. д. В подавляющем большинстве случаев изотопы одного и того же химического элемента обладают одинаковыми химическими и почти одинаковыми физическими свойствами (исключение составляют, например, изотопы водорода), определяющимися в основном структурой электронных оболочек, которая является одинаковой для всех изотопов данного элемента. Примером ядер-изобар могут служить ядра Пространственное квантование (магнитное квантовое число).) - student2.ru Ве, Пространственное квантование (магнитное квантовое число).) - student2.ru В, Пространственное квантование (магнитное квантовое число).) - student2.ru С. В насто­ящее время известно более 2500 ядер, отличающихся либо Z, либо А, либо тем и другим.

Радиус ядра задается эмпирической формулой

Пространственное квантование (магнитное квантовое число).) - student2.ru (251.1)

где R0=(1,3¸1,7)10–15 м. Однако при употреблении этого понятия необходимо со­блюдать осторожность (из-за его неоднозначности, например из-за размытости гра­ницы ядра). Из формулы (251.1) вытекает, что объем ядра пропорционален числу нуклонов в ядре. Следовательно, плотность ядерного вещества примерно одинакова для всех ядер (»1017 кг/м3).

65Энергия связи ядер. Дефект массы

Исследования показывают, что атомные ядра являются устойчивыми образованиями. Это означает, что в ядре между нуклонами существует определенная связь.

Массу ядер очень точно можно определить с помощью масс-спектрометров — из­мерительных приборов, разделяющих с помощью электрических и магнитных полей пучки заряженных частиц (обычно ионов) с разными удельными зарядами Q/m. Масс-спектрометрические измерения показали, что масса ядра меньше, чем сумма масс составляющих его нуклонов. Но так как всякому изменению массы должно соответствовать изменение энергии, то, следовательно, при образовании ядра должна выделяться определенная энергия. Из закона сохранения энергии вытекает и обратное: для разделения ядра на составные части необходимо затратить такое же количество энергии, которое выделяется при его образовании. Энергия, которую необходимо затратить, чтобы расщепить ядро на отдельные нуклоны, называетсяэнергией связи ядра

Согласно выражению (40.9), энергия связи нуклонов в ядре

Пространственное квантование (магнитное квантовое число).) - student2.ru (252.1)

где тp, тn, тя — соответственно массы протона, нейтрона и ядра. В таблицах обычно приводятся не массы тя ядер, а массы т атомов. Поэтому для энергии связи ядра пользуются формулой

Пространственное квантование (магнитное квантовое число).) - student2.ru (252.2)

где mH — масса атома водорода. Так как mH больше mp на величину me, то первый член в квадратных скобках включает в себя массу Z электронов. Но так как масса атома т отличается от массы ядра тя как раз на массу Z электронов, то вычисления по формулам (252.1) и (252.2) приводят к одинаковым результатам.

Величина

Пространственное квантование (магнитное квантовое число).) - student2.ru

называетсядефектом массы ядра. На эту величину уменьшается масса всех нуклонов при образовании из них атомного ядра.

Часто вместо энергии связи рассматривают удельную энергию связи dEсв — энер­гию связи, отнесенную к одному нуклону. Она характеризует устойчивость (прочность) атомных ядер, т. е. чем больше dEсв, тем устойчивее ядро. Удельная энергия связи зависит от массового числа А элемента (рис. 342). Для легких ядер (А£12) удельная энергия связи круто возрастает до 6¸7 МэВ, претерпевая целый ряд скачков (напри­мер, для Пространственное квантование (магнитное квантовое число).) - student2.ru Н dEсв=1,1 МэВ, для Пространственное квантование (магнитное квантовое число).) - student2.ru He — 7,1 МэВ, для Пространственное квантование (магнитное квантовое число).) - student2.ru Li — 5,3 МэВ), затем более медленно возрастает до максимальной величины 8,7 МэВ у элементов с А=50¸60, а потом постепенно уменьшается у тяжелых элементов (например, для Пространственное квантование (магнитное квантовое число).) - student2.ru U она составляет 7,6 МэВ). Отметим для сравнения, что энергия связи валентных электронов в атомах составляет примерно 10 эВ (в 106! раз меньше).

66 Ядерные силы

Между составляющими ядро нуклонами действуют особые, специфические для ядра силы, значительно превышающие кулоновские силы отталкивания между протонами. Они называютсяядерными силами.

. Ядерные силы относятся к классу так называемых сильных взаимодействий.

Перечислим основные свойства ядерных сил:

1) ядерные силы являются силами притяжения;

2) ядерные силы являются короткодействующими — их действие проявляется то­лько на расстояниях примерно 10–15 м. При увеличении расстояния между нуклонами ядерные силы быстро уменьшаются до нуля, а при расстояниях, меньших их радиуса действия, оказываются примерно в 100 раз больше кулоновских сил, действующих между протонами на том же расстоянии;

3) ядерным силам свойственна зарядовая независимость: ядерные силы, дейст­вующие между двумя протонами, или двумя нейтронами, или, наконец, между прото­ном и нейтроном, одинаковы по величине. Отсюда следует, что ядерные силыимеютнеэлектрическую природу;

4) ядерным силам свойственно насыщение, т. е. каждый нуклон в ядре взаимодей­ствует только с ограниченным числом ближайших к нему нуклонов. Насыщение проявляется в том, что удельная энергия связи нуклонов в ядре (если не учитывать легкие ядра) при увеличении числа нуклонов не растет, а остается приблизительно постоянной;

5) ядерные силы зависят от взаимной ориентации спинов взаимодействующих нуклонов. Например, протон и нейтрон образуют дейтрон (ядро изотопа Пространственное квантование (магнитное квантовое число).) - student2.ru Н) только при условии параллельной ориентации их спинов;

6) ядерные силы не являются центральными, т. е. действующими по линии, соеди­няющей центры взаимодействующих нуклонов.

67Радиоактивность

Французский физик А. Беккерель (1852—1908) в 1896 г. при изучении люминесценции солей урана случайно обнаружил самопроизвольное испускание ими излучения неизвест­ной природы, которое действовало на фотопластинку, ионизировало воздух, проника­ло сквозь тонкие металлические пластинки, вызывало люминесценцию ряда веществ. Продолжая исследование этого явления обнаружили, что беккерелевское излучение свойственно не только урану, но и многим другим тяжелым элементам, таким, как торий и актиний. Они показали также, что урановая смоляная обманка (руда, из которой добывается металлический уран) испускает излучение, интенсивность которого во много раз превышает интенсив­ность излучения урана. Таким образом удалось выделить два новых элемента — носи­теля беккерелевского излучения: полоний Пространственное квантование (магнитное квантовое число).) - student2.ru Рo и радий Пространственное квантование (магнитное квантовое число).) - student2.ru Ra.

Обнаруженное излучение было названорадиоактивным излучением, а само явле­ние — испускание радиоактивного излучения —радиоактивностью.

Дальнейшие опыты показали, что на характер радиоактивного излучения препара­та не оказывают влияния вид химического соединения, агрегатное состояние, механи­ческое давление, температура, электрические и магнитные поля, т. е. все те воздейст­вия, которые могли бы привести к изменению состояния электронной оболочки атома. Следовательно, радиоактивные свойства элемента обусловлены лишь структурой его ядра.

В настоящее время подрадиоактивностью понимают способность некоторых атом­ных ядер самопроизвольно (спонтанно) превращаться в другие ядра с испусканием различных видов радиоактивных излучений и элементарных частиц. Радиоактивность подразделяется наестественную (наблюдается у неустойчивых изотопов, существу­ющих в природе) иискусственную (наблюдается у изотопов, полученных посредством ядерных реакций). Принципиального различия между этими двумя типами радиоактив­ности нет, так как законы радиоактивного превращения в обоих случаях одинаковы.

Радиоактивное излучение бывает трех типов: a-, b- и g-излучение. a-Излучение отклоняется электрическим и магнитным полями, обладает высокой ионизирующей способностью и малой проникающей a-Излучение представляет собой поток ядер гелия; заряд a-частицы равен +2е, а масса совпадает с массой ядра изотопа гелия Пространственное квантование (магнитное квантовое число).) - student2.ru Не. По отклонению a-частиц в электрическом и магнитном полях был определен их удельный заряд Q/ma , значение которого подтвердило правильность представлений об их природе.

b-Излучение отклоняется электрическим и магнитным полями; его ионизирующая способность значительно меньше (примерно на два порядка), а проникающая способ­ность гораздо больше (поглощается слоем алюминия толщиной примерно 2 мм), чем у a-частиц. b-Излучение представляет собой поток быстрых электронов (это вытекает из определения их удельного заряда).

Поглощение потока электронов с одинаковыми скоростями в однородном веществе подчиняется экспоненциальному закону N=N0em x, где N0и N — число электронов на входе и выходе слоя вещества толщиной x, m — коэффициент поглощения. b-Излучение сильно рассеивается в веществе, поэтому m зависит не только от вещества, но и от размеров и формы тел, на которые b-излучение падает.

g-Излучение не отклоняется электрическим и магнитным полями, обладает от­носительно слабой ионизирующей способностью и очень большой проникающей спо­собностью (например, проходит через слой свинца толщиной 5 см), при прохождении через кристаллы обнаруживает дифракцию. g-Излучение представляет собой корот­коволновое электромагнитное излучение с чрезвычайно малой длиной волны l<10–10 м и вследствие этого — ярко выраженными корпускулярными свойствами, т.е. является потоком частиц — g-квантов (фотонов).

Под радиоактивным распадом, или просто распадом, понимают естественное радиоак­тивное превращение ядер, происходящее самопроизвольно. Атомное ядро, испытыва­ющее радиоактивный распад, называется материнским, возникающее ядро — дочерним.

Теория радиоактивного распада строится на предположении о том, что радиоак­тивный распад является спонтанным процессом, подчиняющимся законам статистики. Так как отдельные радиоактивные ядра распадаются независимо друг от друга, то можно считать, что число ядер dN, распавшихся в среднем за интервал времени от t до t+dt, пропорционально промежутку времени dt и числу N нераспавшихся ядер к моме­нту времени t:

Пространственное квантование (магнитное квантовое число).) - student2.ru (256.1)

где l — постоянная для данного радиоактивного вещества величина, называемая постоянной радиоактивного распада; знак минус указывает, что общее число радиоак­тивных ядер в процессе распада уменьшается. Разделив переменные и интегрируя:

Пространственное квантование (магнитное квантовое число).) - student2.ru

получим

Пространственное квантование (магнитное квантовое число).) - student2.ru (256.2)

где N0—начальное число нераспавшихся ядер (в момент времени t=0), N—число нераспавшихся ядер в момент времени t. Формула (256.2) выражает закон радиоактив­ного распада, согласно которому число нераспавшихся ядер убывает со временем по экспоненциальному закону.

Интенсивность процесса радиоактивного распада характеризуют две величины: период полураспада Т1/2 и среднее время жизни t радиоактивного ядра.Период полураспада Т1/2 — время, за которое исходное число радиоактивных ядер в среднем уменьшается вдвое. Тогда, согласно (256.2),

Пространственное квантование (магнитное квантовое число).) - student2.ru

откуда

Пространственное квантование (магнитное квантовое число).) - student2.ru

Периоды полураспада для естественно-радиоактивных элементов колеблются от десятимиллионных долей секунды до многих миллиардов лет.

Суммарная продолжительность жизни dN ядер равна t|dN|=lNtdt. Проинтег­рировав это выражение по всем возможным t (т. е. от 0 до ¥) и разделив на началь­ное число ядер N0, получимсреднее время жизни t радиоактивного ядра:

Пространственное квантование (магнитное квантовое число).) - student2.ru

. Таким образом, среднее время жизни t радиоактивного ядра есть величина, обратная постоянной радиоактивного распада l.

Активностью А нуклида (общее название атомных ядер, отличающихся числом протонов Z и нейтронов N) в радиоактивном источнике называется число распадов, происходящих с ядрами образца в 1 с:

Пространственное квантование (магнитное квантовое число).) - student2.ru (256.3)

Единица активности в СИ —беккерель (Бк): 1 Бк — активность нуклида, при которой за 1 с происходит один акт распада. До сих пор в ядерной физике применяется и внесистемная единица активности нуклида в радиоактивном источнике —кюри (Ки): 1 Ки= 3,7×1010Бк.

Радиоактивный распад происходит в соответствии с так называемымиправилами смещения, позволяющими установить, какое ядро возникает в результате распада данного материнского ядра. Правила смещения:

Пространственное квантование (магнитное квантовое число).) - student2.ru (256.4)

Пространственное квантование (магнитное квантовое число).) - student2.ru (256.5)

где Пространственное квантование (магнитное квантовое число).) - student2.ru Х — материнское ядро, Y — символ дочернего ядра, Пространственное квантование (магнитное квантовое число).) - student2.ru Не — ядро гелия (a-частица), Пространственное квантование (магнитное квантовое число).) - student2.ru е—символическое обозначение электрона (заряд его равен –1, а массовое число — нулю). Правила смещения являются ничем иным, как следствием двух зако­нов, выполняющихся при радиоактивных распадах, — сохранения электрического за­ряда и сохранения массового числа: сумма зарядов (массовых чисел) возникающих ядер и частиц равна заряду (массовому числу) исходного ядра.

Возникающие в результате радиоактивного распада ядра могут быть, в свою очередь, радиоактивными. Это приводит к возникновениюцепочки, илиряда, радиоак­тивных превращений, заканчивающихся стабильным элементом. Совокупность элемен­тов, образующих такую цепочку, называетсярадиоактивным семейством.

Из правил смещения (256.4) и (256.5) вытекает, что массовое число при a-распаде уменьшается на 4, а при b-распаде не меняется. Поэтому для всех ядер одного и того же радиоактивного семейства остаток от деления массового числа на 4 одинаков. Таким образом, существует четыре различных радиоактивных семейства, для каждого из которых массовые числа задаются одной из следующих формул:

Пространственное квантование (магнитное квантовое число).) - student2.ru

где n — целое положительное число. Семейства называются по наиболее долгоживущему (с наибольшим периодом полураспада) «родоначальнику»: семейства тория (от Пространственное квантование (магнитное квантовое число).) - student2.ru Th), нептуния (от Пространственное квантование (магнитное квантовое число).) - student2.ru Np), урана (от Пространственное квантование (магнитное квантовое число).) - student2.ru U) и актиния (от Пространственное квантование (магнитное квантовое число).) - student2.ru Ас). Конечными нуклидами соответственно являются Пространственное квантование (магнитное квантовое число).) - student2.ru Pb, Пространственное квантование (магнитное квантовое число).) - student2.ru Bi, Пространственное квантование (магнитное квантовое число).) - student2.ru Pb, Пространственное квантование (магнитное квантовое число).) - student2.ru Pb, т.е. единственное семейство непту­ния (искусственно-радиоактивные ядра) заканчивается нуклидом Bi, а все остальные (естественно-радиоактивные ядра) — нуклидами Рb

68 Ядерные реакции и их основные типы

Ядерные реакции — это превращения атомных ядер при взаимодействии с элементар­ными частицами (в том числе и с g-квантами) или друг с другом. Наиболее распрост­раненным видом ядерной реакции является реакция, записываемая символически сле­дующим образом:

Пространственное квантование (магнитное квантовое число).) - student2.ru

где Х и Y — исходное и конечное ядра, а и b — бомбардирующая и испускаемая (или испускаемые) в ядерной реакции частицы.

В ядерной физике эффективность взаимодействия характеризуютэффективным сечением s. С каждым видом взаимодействия частицы с ядром связывают свое эффек­тивное сечение: эффективное сечение рассеяния определяет процессы рассеяния, эффек­тивное сечение поглощения — процессы поглощения. Эффективное сечение ядерной реакции

Пространственное квантование (магнитное квантовое число).) - student2.ru

где N — число частиц, падающих за единицу времени на единицу площади поперечного сечения вещества, имеющего в единице объема п ядер, dN — число этих частиц, вступающих в ядерную реакцию в слое толщиной dx. Эффективное сечение s имеет размерность площади и характеризует вероятность того, что при падении пучка частиц навещество произойдет реакция.

Единица эффективного сечения ядерных процессов — барн (1 барн= 10–28 м2). В любой ядерной реакции выполняются законы сохранения электрических зарядов и массовых чисел: сумма зарядов (и сумма массовых чисел) ядер и частиц, вступающих в ядерную реакцию, равна сумме зарядов (и сумме массовых чисел) конечных продук­тов (ядер и частиц) реакции. Выполняются также законы сохранения энергии, импульса и момента импульса.

В отличие от радиоактивного распада, который протекает всегда с выделением энергии, ядерные реакции могут быть как экзотермическими (с выделением энергии), так и эндотермическими (с поглощением энергии).

Важную роль в объяснении механизма многих ядерных реакций сыграло пред­положение Н. Бора (1936) о том, что ядерные реакции протекают в две стадии по следующей схеме:

Пространственное квантование (магнитное квантовое число).) - student2.ru

Первая стадия — это захват ядром Х частицы а, приблизившейся к нему на расстояние действия ядерных сил, и образование промежуточного ядра С, называемого составным (или компаунд-ядром). Энергия влетевшей в ядро частицы быстро распределяется между нуклонами составного ядра, в результате чего оно оказывается в возбужденном состоянии. При столкновении нуклонов составного ядра один из нуклонов или a-частица может получить энергию, достаточную для вылета из ядра. В результате возможна вторая стадия ядерной реакции — распад составного ядра на ядро Y и частицу b.

В ядерной физике вводится характерное ядерное время — время, необходимое для пролета частицей расстояния порядка величины, равной диаметру ядра (d»10–15 м). Некоторые реакции протекают без образования составного ядра, они называются прямыми ядерными взаимодействиями (например, реакции, вызываемые быстрыми нук­лонами и дей

Наши рекомендации