Симметрия и законы сохранения.
Долгое время эти два понятия были абсолютно не связаны.
Симметрия.Понятие симметрии изначально появилось не в науке , а в искусстве. Группа-это математический термин.
Простейшая группа: группа фигур на плоскости:
I)
- симмертрия движения,т.е. переход в себя (симметрия относительно сдвига)
- группы отражений,т.е. в зеркале отражает сами себя.
- Группы вращения на плоскости (группа прямоугольника: после полного оборота прямоугольник переходит в самого себя,группа прав треуг(на 120градусов),группа квадрата(на 90 ) тоже самое возможно и в 3-хмерном пространстве
II) Группа подобия (Это уже не группа движения) например раковина малюска: если увеличить в 2 раза,то ничего не измениться) это более редкий вид симметрии.
Есть двуковые симметрии-поэзия,музыка(ритм).Объекты могут быть более или менее симметричны,например: окружность симметричнее всех многоугольников.
??????с относительно группы вращения, а прямая относительно группы сдвига.Дети япредпочитают более симметричные фигуры,нежели взрослые.
Часть 2. Законы сохранения.
Ограничимся только физикой, там они наиболее жесткие.
Некоторые величины в изолированных системах, сохраняются, тюею система меняется, но некотор. особо важные величины сохраняются.
Закон сохранения импульса имомента импульса(вращательный момент).
Закон сохранения энергии(самый важный закон для физики) (XIXв.)так долго не могли открыть этот закрн так не знали свех видов (взаимодействия энергии)
Сейчас уже хорошо описаны все виды взаимодействий.доказано,что во всех энергия сохраняется!
Закон сохранения энергии
Закон сохранения энергии - следствие симметрии природы относительно сдвигов во времени. Допустим, что неравномерность хода времени проявилась в том, что, начиная с некоторого момента времени, стала периодически изменяться постоянная всемирного тяготения. Тогда легко построить машину, которая будет получать энергию ни из чего - "вечный двигатель". Для этого нужно поднимать грузы в период слабого тяготения и превращать приобретенную ими энергию в кинетическую, сбрасывая грузы в период увеличения тяготения. Из сказанного следует, что однородность хода времени можно проверить по тому, насколько точно выполняется закон сохранения энергии.
Связь законов сохранения с симметрией системы. Ответ на естественный вопрос о том, почему справедливы законы сохранения в физике был найден сравнительно недавно. Оказалось, что законы сохранения возникают в системах при наличии у них определенных элементов симметрии. (Элементом симметрии системы называется любое преобразование, переводящие систему в себя, т.е. не изменяющее ее. Например элементом симметрии квадрата является поворот на прямой угол вокруг оси, проходящей через его центр - “ось вращения четвертого порядка”).
Глобальные законы сохранения связаны с существованием таких преобразований, которые оставляют неизменными любую систему. К ним относятся:
Закон сохранения энергии, являющийся следствием симметрии относительно сдвига вовремени (однородности времени).
Закон сохранения импульса, являющийся следствием симметрии относительно параллельного переноса в пространстве (однородности пространства).
Закон сохранения момента импульса, являющийся следствием симметрии относительно поворотов в пространстве (изотропности пространства).
Закон сохранения заряда, являющийся следствием симметрии относительно замены описывающих систему комплексных параметров на их комплексно сопряженные значения.
Закон сохранения четности, являющийся следствием симметрии относительно операции инверсии (“отражения в зеркале”, меняющего “право” на “лево”).
Закон сохранения энтропии, являющийся следствием симметрии относительно обращения времени.
Кратко рассмотрим законы сохранения механических величин.
Закон сохранения импульса. Каждой материальной точке с массой m, движущейся со скоростью V,приписывается векторная характеристика - импульс, определяемый как произведение Массы на скорость:
Из законов Ньютона можно показать, что при движении в пустом пространстве импульс сохраняется во времени, а при наличии взаимодействия скорость его изменения определяется суммой приложенных сил:
В случае системы материальных точек (совокупностью которых можно считать любое реальное тело) полный импульс определяется как векторная сумма всех импульсов
Скорость изменения полного импульса определяется суммой внешних сил, действующих на систему (т.е. только сил, описывающих взаимодействие элементов системы с не принадлежащими ей объектами):
Системы, на которые не действуют внешние силы, называются замкнутыми. В них полный импульс не изменяется во времени. Это свойство находит большое практическое применение, поскольку лежит в основе принципа реактивного движения (рис. .5_1)..
В классической механике закон сохранения импульса обычно выводится как следствие законов Ньютона. Однако, этот закон сохранения верен и в случаях, когда Ньютоновская механика неприменима (релятивистская физика, квантовая механика). Как отмечалось, он может быть получен как следствие интуитивно-верного утверждения о том, что свойства нашего мира не изменятся, если все его объекты (или начало отсчета!) переместить на некоторый вектор L.В настоящее время не существует каких-либо экспериментальных фактов, свидетельствующих о невыполнении закона сохранения импульса.
Нётер теорема, фундаментальная теорема физики, устанавливающая связь между свойствами симметрии физической системы и законами сохранения. Сформулирована Э. Нётер в 1918. Н. т. утверждает, что для физической системы, уравнения движения которой имеют форму системы дифференциальных уравнений и могут быть получены из вариационного принципа механики,
(Вариационные принципы механики. Принципами механики называются исходные положения, отражающие столь общие закономерности механических явлений, что из них как следствия можно получить все уравнения, определяющие движение механической системы (или условия её равновесия). В ходе развития механики был установлен ряд таких принципов, каждый из которых может быть положен в основу механики, что объясняется многообразием свойств и закономерностей механических явлений. Эти принципы подразделяют на невариационные и вариационные.)
каждому непрерывно зависящему от одного параметра преобразованию, оставляющему инвариантным вариационный функционал, соответствует закон сохранения. В механике частиц или полей вариационным функционалом служит действие S; из условия обращения в нуль вариации действия S = 0 (наименьшего действия принцип) получаются уравнения движения системы. Каждому преобразованию, при котором действие не меняется, соответствует дифференциальный закон сохранения. Интегрирование уравнения, выражающего такой закон, приводит к интегральному закону сохранения.
Н. т. даёт наиболее простой и универсальный метод получения законов сохранения в классической и квантовой механике, теории поля и т. д.
Непрерывными преобразованиями в пространстве-времени, оставляющими инвариантным действие (а следовательно, и уравнения движения), являются: сдвиг во времени (что выражает физическое свойство равноправия всех моментов времени — однородность времени), сдвиг в пространстве (свойство равноправия всех точек пространства — однородность пространства), трёхмерное пространственное вращение (свойство равноправия всех направлений в пространстве — изотропия пространства), четырёхмерные вращения в пространстве-времени, в частности Лоренца преобразования, выражающие принцип относительности. Согласно К. т., из инвариантности относительно сдвига во времени следует закон сохранения энергии; относительно пространственных сдвигов — закон сохранения импульса; относительно пространственного вращения — закон сохранения момента количества движения; относительно преобразований Лоренца — закон сохранения лоренцова момента, или обобщённый закон движения центра масс (центр масс релятивистской системы движется равномерно и прямолинейно).