Термодинамический и статистический методы анализа состояний макросистем
Открытие закона сохранения энергии способствовало развитию двух качественно различных, но взаимно дополняющих методов исследования тепловых явлений и свойств макросистем: термодинамического и статистического (молекулярно-кинетического). Первый из них лежит в основе термодинамики, второй – молекулярной физики.
Термодинамика представляет собой науку о тепловых явлениях, в которой не учитывается молекулярное строение тел. В термодинамике тепловые явления описываются с помощью величин, регистрируемых приборами, не реагирующими на воздействие отдельных молекул (термометр, манометр и др.). Все законы термодинамики относятся к телам, число молекул которых огромно. Такие тела называют макроскопическими. Они образуют макросистемы. Газ в баллоне, вода в стакане, песчинка, камень, стальной стержень и т. п. – все это примеры макросистем.
Основа термодинамического метода – определение состояния термодинамической системы, представляющей собой совокупность макроскопических тел, которые взаимодействуют и обмениваются энергией как между собой, так и с другими телами (внешней средой). Состояние системы задается термодинамическими параметрами (параметрами системы), характеризующими ее свойства. Обычно в качестве термодинамических параметров состояния выбирают температуру, давление и удельный объем (объем единицы массы).
Температура – физическая величина, характеризующая состояние термодинамического равновесия макроскопической системы. В соответствии с решением XI Генеральной конференции по мерам и весам (1960 г.) в настоящее время рекомендовано применять только две температурные шкалы – термодинамическую и Международную практическую, градуированные соответственно в Кельвинах (К) и градусах Цельсия (°С). Анализ показывает, что 0 К (абсолютный нуль) недостижим, хотя сколь угодно близкое приближение к нему возможно.
К концу XIX в. была создана последовательная теория поведения больших общностей атомов и молекул – молекулярно-кинетическая теория, или статистическая механика. Многочисленными опытами была доказана справедливость этой теории.
Процессы, изучаемые молекулярной физикой, являются результатом совокупного действия огромного числа молекул. Поведение громадного числа молекул анализируется с помощью статистического метода. Он основан на том, что свойства макроскопической системы в конечном результате определяются свойствами частиц системы, особенностями их движения и усредненными значениями кинетических и динамических характеристик таких частиц (скорости, энергии, давления и т. д.). Например, температура тела определяется скоростью беспорядочного движения его молекул, но так как в любой момент времени разные молекулы имеют различные скорости, она может быть выражена только через среднее значение скорости движения молекул. Нельзя говорить о температуре одной молекулы. Макроскопические характеристики тел имеют физический смысл лишь в случае большого числа молекул.
После создания молекулярной физики термодинамика не утратила своего значения. Она помогает понять многие явления и с успехом применяется при расчетах многих важных механических устройств. Общие законы термодинамики справедливы для всех веществ независимо от их внутреннего строения. Вместе с тем при расчете различных процессов с помощью термодинамики многие физические параметры, например теплоемкости тел, необходимо определять экспериментально. Статистические же методы позволяют на основе данных о строении вещества определить такие параметры. Однако количественная теория твердого и особенно жидкого состояния вещества очень сложна, поэтому в ряде случаев простые расчеты, основанные на законах термодинамики, оказываются незаменимыми.
В настоящее время в науке и технике широко используются как термодинамические, так и статистические методы описания свойств микросистемы.
2)Термодинамическая система
Термодинамическая система — совокупность макроскопических тел, которые могут взаимодействовать между собой и с др. телами (внешней средой) — обмениваться с ними энергией и веществом; состоит из столь большого числа структурных частиц (атомов, молекул), что её состояние можно характеризовать макроскопическими параметрами: плотностью, давлением, концентрацией веществ, образующих термодинамическую систему, и т.д. Термодинамическая система находится в равновесии, если параметры системы с течением времени не меняются и в системе нет каких-либо стационарных потоков (теплоты, вещества и др.). Для равновесных термодинамических систем вводится понятие температуры какпараметра состояния, имеющего одинаковое значение для всех макроскопических частей системы. Число независимых параметров состояния равно числу степеней свободы термодинамической системы, остальные параметры могут быть выражены через независимые с помощью уравнения состояния. Свойстваравновесныхтермодинамических систем изучает термодинамика равновесных процессов (термостатика); свойства неравновесных систем — термодинамика неравновесных процессов. Рассматривают термодинамические системы:
§ закрытые, не обменивающиеся веществом с др. системами;
§ открытые, обменивающиеся веществом и энергией с др. системами;
§ адиабатные, в которых отсутствует теплообмен с др. системами;
§ изолированные, не обменивающиеся с др. системами ни энергией, ни веществом.
Если термодинамическая система не изолирована, то её состояние может изменяться: изменение состояния термодинамическая системы называют термодинамическим процессом.
Термодинамическая система может быть физически однородной (гомогенной системой) и неоднородной (гетерогенной системой), состоящей из нескольких однородных частей с разными физическими свойствами. В результате фазовых и химических превращений гомогенная термодинамическая система может стать гетерогенной и наоборот.
3)Термодинамические параметры
Параметры состояния, термодинамические параметры — физические величины, характеризующие состояние термодинамической системы: температура, давление, удельный объём, намагниченность,электрическая поляризация и др. Различают экстенсивные параметры состояния, пропорциональныемассе системы:
§ объём,
§ внутренняя энергия,
§ энтропия,
§ энтальпия,
§ энергия Гиббса,
§ энергия Гельмгольца (свободная энергия),
и интенсивные параметры состояния, не зависящие от массы системы:
§ давление,
§ температура,
§ концентрация,
§ магнитная индукция и др.
Не все параметры состояния независимы, так что равновесное состояние системы можно однозначно определить, установив значения ограниченного числа параметров состояния.
Температура
Температу́ра (от лат. temperatura — надлежащее смешение, нормальное состояние) — скалярная физическая величина, характеризующая приходящуюся на одну степень свободы среднюю кинетическую энергию частиц макроскопической системы, находящейся в состоянии термодинамического равновесия.
... мерилом температуры является не само движение, а хаотичность этого движения. Хаотичность состояния тела определяет его температурное состояние, и эта идея (которая впервые была разработана Больцманом), что определённое температурное состояние тела вовсе не определяется энергией движения, но хаотичностью этого движения, и является тем новым понятием в описании температурных явлений, которым мы должны пользоваться ... П. Л. Капица[1] |
В Международной системе единиц (СИ) термодинамическая температура используется в качестве одной из семи основных физических величин, входящих в Международную систему величин (англ. InternationalSystemofQuantities, ISQ), а её единицей является кельвин, представляющий собой, соответственно, одну из семи основных единиц СИ[2]. Кроме термодинамической температуры в СИ используется температура Цельсия, её единицей является градус Цельсия, входящий в состав производных единиц СИ, имеющих специальные наименования и обозначения, и по размеру равный кельвину[3]. На практике часто применяют градусы Цельсия из-за исторической привязки к важным характеристикам воды — температуре таяния льда (0 °C) и температуре кипения (100 °C). Это удобно, так как большинство климатических процессов, процессов в живой природе и т. д. связаны с этим диапазоном. Изменение температуры на один градус Цельсия тождественно изменению температуры на один кельвин. Поэтому после введения в 1967 г. нового определения кельвина, температура кипения воды перестала играть роль неизменной реперной точки и, как показывают точные измерения, она уже не равна 100 °C, а близка к 99,975 °C[4].