Работа сил электростатического поля при движении электрического заряда по любой замкнутой траектории равна нулю.
30.Потенциал. Потенциал поля точечного заряда и системы зарядов. Связь между напряженностью и потенциалом.
)ПОТЕНЦИАЛ(потенциальная функция), понятие, характеризующее широкий класс физических силовых полей (электрических, гравитационных и т. п.) и вообще поля физических величин, представляемых векторами (поле скоростей жидкости и т. п.). В общем случае потенциал векторного поля a(x,y,z) - такая скалярная функция u(x,y,z), что a=grad.
Если поле создается системой n точечных зарядов Q1, Q2, ..., Qn, то работа электростатических сил, совершаемая над зарядом Q0, равна алгебраической сумме работ сил, обусловленных каждым из зарядов в отдельности. Поэтому потенциальная энергия U заряда Q0, находящегося в этом поле, равна сумме его потенциальных энергий Ui, создаваемых каждым из зарядов в отдельности:
Из формул (84.2) и (84.3) вытекает, что отношение U/Q0 не зависит от Q0 и является поэтому энергетической характеристикой электростатического поля, называемой потенциалом:
j=U/Q0. (84.4)
Потенциал j в какой-либо точке электростатического поля есть физическая величина, определяемая потенциальной энергией единичного положительного заряда, помещенного в эту точку.
Из формул (84.4) и (84.2) следует, что потенциал поля, создаваемого точечным зарядом Q, равен
Работа, совершаемая силами электростатического поля при перемещении заряда Q0 из точки 1 в точку 2 (см. (84.1), (84.4), (84.5)), может быть представлена как
A12==U1-U2=Q0(j1-j2), (84.6) т. е. равна произведению перемещаемого заряда на разность потенциалов в начальной и конечной точках. Разность потенциалов двух точек 1 и 2 в электростатическом поле определяется работой, совершаемой силами поля, при перемещении единичного положительного заряда из точки 1 в точку 2.
Работа сил поля при перемещении заряда Q0 из точки 1 в точку 2 может быть записана также в виде
Приравняв (84.6) и (84.7), придем к выражению для разности потенциалов:
где интегрирование можно производить вдоль любой линии, соединяющей начальную и конечную точки, так как работа сил электростатического поля не зависит от траектории перемещения.Если перемещать заряд Q0 из произвольной точки за пределы поля, т. е. в бесконечность, где по условию потенциал равен нулю, то работа сил электростатического поля, согласно (84.6),
A¥=Q0j,
Таким образом, потенциал — физическая величина, определяемая работой по перемещению единичного положительного заряда при удалении его из данной точки в бесконечность. Эта работа численно равна работе, совершаемой внешними силами (против сил электростатического поля) по перемещению единичного положительного заряда из бесконечности в данную точку поля.
Из выражения (84.4) следует, что единица потенциала — вольт (В): 1В есть потенциал такой точки поля, в которой заряд в 1 Кл обладает потенциальной энергией 1 Дж (1В=1Дж/Кл). Учитывая размерность вольта, можно показать, что введенная в § 79 единица напряженности электростатического поля действительно равна 1 В/м: 1Н/Кл=1Н• м/(Кл•м)=1 Дж/(Кл•м)=1 В/м.Из формул (84.3) и (84.4) вытекает, что если поле создается несколькими зарядами, то потенциал поля системы зарядов равен алгебраической сумме потенциалов полей всех этих зарядов:
Потенциал является важной характеристикой электрического поля, он определяет всевозможные энергетические характеристики процессов, проходящих в электрическом поле. Кроме того, расчет потенциала поля проще расчета напряженности, хотя бы потому, что является скалярной (а не векторной) величиной. Безусловно, что потенциал и напряженность поля связаны между собой достаточно сложными формулами.
ПОПРОБУЕМ ВЫЯСНИТЬ СВЯЗЬ ПРОСТЫМИ СЛОВАМИ:.
Eсли перемещать единичный заряд даже и в неоднородном эл. поле, то энергия на его перемещение и есть потенциал между точками,между которыми его перемещали.
Напряженность - это силовая характеристика эл.поля, а разность потенциалов - энергетическая характеристика эл.поля, поэтому разность потенциалов равна произведению напряженности на перемещение заряда U=E*S
Связь между напряженностью электростатического поля и потенциалом можно выразить с помощью понятия градиента потенциала: E = - grad Ф
31.Электроемкость. Емкость плоского и сферического конденсаторов. Соединение конденсаторов и емкость батарей.
Электроемкость, отношение количества электричества, имеющегося в каком-либо проводящем теле, к величине потенциала этого тела, при условии, что все проводящие тела, находящиеся вблизи этого тела, соединены с землею.
32.Диэлектрики, виды диэлектриков. Поляризация диэлектриков. Поле в диэлектрике.
Диэлектрик (изолятор) — вещество, плохо проводящее или совсем не проводящее электрический ток.
Неорганические диэлектрики: стекла, слюда, керамика, неорганические пленки (окислы, нитриды, фториды), металлофосфаты, электроизоляционный бетон. Особенности неорганических диэлектриков - негорючи, как правило, свето-, озоно- термостойки, имеют сложную технологию изготовления. Старение на переменном напряжении практически отсутствует, склонны к старению на постоянном напряжении.
Органические диэлектрики: полимеры, воски, лаки, резины, бумаги, лакоткани. Особенности органических диэлектриков - горючи (в основном), малостойки к атмосферным и эксплуатационным воздействиям, имеют (в основном) простую технологию изготовления, как правило, более дешевы по сравнению с неорганическими диэлектриками. Старение на постоянном напряжении практически отсутствует, на переменном напряжении стареют за счет частичных разрядов, дендритов и водных триингов.
Поляризация диэлектриков — явление, связанное с ограниченным смещением связанных зарядов в диэлектрике или поворотом электрических диполей, обычно под воздействием внешнего электрического поля, иногда под действием других внешних сил или спонтанно.Электрическое поле в диэлектрике описывают вектором электрической индукции D = ε0E + Р
33.Энергия и плотность энергии электростатического поля.
Мы видим, что энергия электрического поля прямо пропорциональна квадрату его напряженности Е и объёму V, занятому полем. Величину энергии поля, отнесенной к единице объема, называют плотностью энергии:
34.Постоянный электрический ток. Сила и плотность тока. Закон Ома для однородного участка цепи.
Электрический ток называют постоянным, если сила тока и его направление не меняются с течением времени.
Плотность тока j — это векторная физическая величина, модуль которой определяется отношением силы тока I в проводнике к площади S поперечного сечения проводника, т.е.
Сила тока — скалярная физическая величина, определяемая отношением заряда Δq, проходящего через поперечное сечение проводника за некоторый промежуток времени Δt, к этому промежутку времени.
Закон Ома для однородного участка цепи был установлен экспериментально в 1826 г. Г. Омом.
Согласно этому закону, сила тока I в однородном металлическом проводнике прямо пропорциональна напряжению U на концах этого проводника и обратно пропорциональна сопротивлению R этого проводника:
35. Сопротивление. Удельное сопротивление. Зависимость сопротивления от температуры. Соединение сопротивлений и расчет сопротивления батарей.
Электри́ческоесопротивле́ние —физическая величина, характеризующая свойства проводника препятствовать прохождению электрического тока и равная отношению напряжения на концах проводника к силе тока, протекающего по нему.Сопротивление (часто обозначается буквой R или r) считается, в определённых пределах, постоянной величиной для данного проводника; её можно рассчитать как- где R-сопротивление;Uразность электрических потенциалов на концах проводника.I — сила тока, протекающего между концами проводника под действием разности потенциалов.
Удельное электрическое сопротивление - основная электрическая характеристика вещества. Удельное электрическое сопротивление численно равно сопротивлению материала проводника длиной 1 м и поперечным сечением 1 кв.м, если ток направлен вдоль нормали к поперечному сечению.
Удельное электрическое сопротивление есть величина
- скалярная для изотропного вещества; и
- величина тензорная для анизотропного вещества.
Удельное сопротивление, а следовательно, и сопротивление металлов, зависит от температуры, увеличиваясь с ее ростом. Температурная зависимость сопротивления проводника объясняется тем, что
возрастает интенсивность рассеивания (число столкновений) носителей зарядов при повышении температуры;
изменяется их концентрация при нагревании проводника. Опыт показывает, что при не слишком высоких и не слишком низких температурах зависимости удельного сопротивления и сопротивления проводника от температуры выражаются формулами:
где ρ0, ρt — удельные сопротивления вещества проводника соответственно при 0 °С и t °C; R0, Rt — сопротивления проводника при 0 °С и t °С, α — температурный коэффициент сопротивления: измеряемый в СИ в Кельвинах в минус первой степени (К-1). Для металлических проводников эти формулы применимы начиная с температуры 140 К и выше.
Из законов Кирхгофа следуют правила для соединения сопротивлений: Последовательное соединение R = R1 + R2 + R3.
Пояснение:
. I = U1/ R1 = U2/ R2 = U3/ R3; U1 + U2 + U3 = U; U = I (R1 +R2 +R3) = I R..
Параллельное соединение
1/ R = 1/ R1 + 1/ R2 + 1/ R3;
где R обозначает общее сопротивление разветвления.
Пояснение: I2 = U2/ R2 ; I3 = U3/ R3 ; I = U / R ; I = I1 + I2 + I3..
U / R = U / R1 + U / R3 + U / R3 ; 1/ R = 1/ R1 + 1/ R2 + 1/ R3 ..
Общее сопротивление меньше, чем любое из сопротивлений ветвей, так как каждая ветвь дает увеличение сечения.
36.Источники тока. ЭДС. Закон Ома для полной цепи постоянного тока.
Исто́чникто́ка (также генератор тока) — двухполюсник, который создаёт ток I = Ik, не зависящий от сопротивления нагрузки, к которой он присоединён.
Электродвижущая сила (ЭДС) — физическая величина, характеризующая работу сторонних (непотенциальных) сил в источниках постоянного или переменного тока. В замкнутом проводящем контуре ЭДС равна работе этих сил по перемещению единичного положительного заряда вдоль контура.
ЭДС можно выразить через напряжённость электрического поля сторонних сил (Eex). В замкнутом контуре (L) тогда ЭДС будет равна:
, где dl — элемент длины контура.
Зако́нО́ма — физический закон, определяющий связь между Электродвижущей силой источника или напряжением с силой тока и сопротивлением проводника. Экспериментально установлен в 1826 году, и назван в честь его первооткрывателя Георга Ома.
Закон Ома для полной цепи:
где:
— ЭДС источника напряжения(В),
— сила тока в цепи (А),
— сопротивление всех внешних элементов цепи(Ом) ,
— внутреннее сопротивление источника напряжения(Ом) .
37.Закон Ома в дифференциальной и обобщенной формах.
В дифференциальной форме
где:
— вектор плотности тока,
— удельная проводимость,
— вектор напряжённости электрического поля.
Обобщённая форма
где:
— ЭДС источника напряжения(В),
— сила тока в цепи (А),
— сопротивление всех внешних элементов цепи(Ом) ,
φ— внутреннее сопротивление источника напряжения(Ом) .
38.Работа и мощность тока. Закон Джоуля - Ленца в интегральной и
дифференциальной формах.
)При наличии тока в проводнике совершается работа против сил сопротивления. Эта работа выделяется в виде тепла. Мощностью тепловых потерь называется величина, равная количеству выделившегося тепла в единицу времени. Согласно закону Джоуля — Ленца мощность тепловых потерь в проводнике пропорциональна силе протекающего тока и приложенному напряжению: Мощность измеряется в ваттах.
работа, совершаемая током на каком-либо участке цепи, прямо пропорциональна напряжению на этом участке, величине тока и времени, в течение которого протекает ток.
Закон Джоуля — Ленца — физический закон, дающий количественную оценку теплового действия электрического тока.Мощность тепла, выделяемого в единице объёма среды при протекании электрического тока, пропорциональна произведению плотности электрического тока на величину электрического поля.
Закон также может быть сформулированв интегральной форме дляслучая протекания токов в тонких проводах.