Метод зон Френеля и построение зон.

Метод зон Френеля и построение зон. - student2.ru Принцип Гюйгенса — Френеля в рамках волновой теории должен был ответить на вопрос о прямолинейном распространении света. Френель решил эту задачу, рассмот­рев взаимную интерференцию вторичных волн и применив прием, получивший назва­ние метода зон Френеля.

Найдем в произвольной точке М амплитуду световой волны, распространяющейся в однородной среде из точечного источника S (рис. 257). Согласно принципу Гюйген­са — Френеля, заменим действие источника S действием воображаемых источников, расположенных на вспомогательной поверхности Ф, являющейся поверхностью фронта волны, идущей из S (поверхность сферы с центром S). Френель разбил волновую поверхность Ф на кольцевые зоны такого размера, чтобы расстояния от краев зоны до М отличались на l/2, т. е. Р1М – Р0М = Р2М – Р1М = Р3М – Р2М = ... = l/2. Подобное разбиение фронта волны на зоны можно выполнить, проведя с центром в точ­ке М сферы радиусами b + Метод зон Френеля и построение зон. - student2.ru , b + 2 Метод зон Френеля и построение зон. - student2.ru , b + 3 Метод зон Френеля и построение зон. - student2.ru , ... . Так как колебания от соседних зон проходят до точки М расстояния, отличающиеся на l/2, то в точку М они приходят в противоположной фазе и при наложении эти колебания будут взаимно ослаблять друг друга. Поэтому амплитуда результирующего светового колебания в точке М

Метод зон Френеля и построение зон. - student2.ru (177.1)

где А1, А2, ... — амплитуды колебаний, возбуждаемых 1-й, 2-й, ..., т-й зонами. Для оценки амплитуд колебаний найдем площади зон Френеля. Пусть внешняя граница m-й зоны выделяет на волновой поверхности сферический сегмент высоты hm (рис. 258). Обозначив площадь этого сегмента через sm, найдем, что площадь m-й зоны Френеля равна Dsm = sm – sm1, где sm1 —площадь сферического сегмента, выделяемого внешней границей (m – 1)-й зоны. Из рисунка следует, что

Метод зон Френеля и построение зон. - student2.ru (177.2)

После элементарных преобразований, учитывая, что l<<a и l<<b, получи Метод зон Френеля и построение зон. - student2.ru (177.3)

Площадь сферического сегмента и площадь т-й зоны Френеля соответственно равны

Метод зон Френеля и построение зон. - student2.ru (177.4)

Выражение (177.4) не зависит от т, следовательно, при не слишком больших т площа­ди зон Френеля одинаковы. Таким образом, построение зон Френеля разбивает волно­вую поверхность сферической волны на равные зоны.

Метод зон Френеля и построение зон. - student2.ru Согласно предположению Френеля, действие отдельных зон в точке М тем меньше, чем больше угол jт (рис. 258) между нормалью n к поверхности зоны и направлением на М, т. е. действие зон постепенно убывает от центральной (около Р0) к периферичес­ким. Кроме того, интенсивность излучения в направлении точки М уменьшается с ростом т и вследствие увеличения расстояния от зоны до точки М. Учитывая оба этих фактора, можем записать

Метод зон Френеля и построение зон. - student2.ru

Общее число зон Френеля, умещающихся на полусфере, очень велико; например при а=b=10 см и l=0,5мкм Метод зон Френеля и построение зон. - student2.ru Поэтому в качестве допустимо­го приближения можно считать, что амплитуда колебания Аm от некоторой m-й зоны Френеля равна среднему арифметическому от амплитуд примыкающих к ней зон, т. е.

Метод зон Френеля и построение зон. - student2.ru (177.5)

Тогда выражение (177.1) можно записать в виде

Метод зон Френеля и построение зон. - student2.ru (177.6)

так как выражения, стоящие в скобках, согласно (177.5), равны нулю, а оставшаяся часть от амплитуды последней зоны ±Аm/2 ничтожно мала. Таким образом, амплитуда результирующих колебаний в произвольной точке М определяется как бы действием только половины центральной зоны Френеля. Следовательно, действие всей волновой поверхности на точку М сводится к действию ее малого участка, меньшего центральной зоны.

Наши рекомендации