Принцип неопределенности Гейзенберга.
В классической механике предполагалось, что координата точки и ее импульс могут быть определены одновременно с любой точностью. Попробуем понять, какие трудности возникают, если пытаться применить классические понятия к объекту, обладающему двойственной природой (частица-волна). Рассмотрим так
называемый пакет волн. Если сложить несколько волн с различными частотами, распространяющиеся в направлении х, получится сложная несинусоидальная волна . Если будет складываться очень большое число волн со всевозможными длинами, образуется волновой пакет шириной Dх (см.рис.). Монохроматическая волна имеет определенную длину волны и, соответственно импульс р = h/l = const,
Dр ® 0, а протяженность ее Dх ® ¥. Очень узкий волновой пакет содержит множество волн, количество которых в пределе стремится к бесконечности и разброс импульсов в нем Dр ® ¥ , а протяженность
Dх ® 0. Т.о., мы приходим к выводу, чем более точно локализован волновой пакет, тем больше оказывается неопределенность в его импульсе.
Гейзенберг выдвинул принцип неопределенности: «Существует принципиальное ограничение на точность, с которой могут быть определены физические величины, не связанное с точностью приборов». Он предложил также формулы, смысл которых в следующем.
соотношения неопределенностей для координаты и импульса «Если измеряется координата х частицы и одновременно проекция ее импульса в направлении х - (рх), то минимальные ошибки при их одновременном измерении связаны этими соотношениями» |
Существует также соотношение неопределенности, касающееся энергии и времени.
соотношения неопределенностей для энергии и времени. «Если атомная система обладает энергией Е в течение времени t, то одновременное измерение этих величин возможно лишь с точностью, определяемой данным соотношением» |
Из соотношений неопределенностей следует, что чем точнее определяется одна величина, тем менее точно – другая при одновременномих измерении,. Так как очень мало, то эти ограничения существенны только в атомных масштабах.
С помощью соотношений неопределенностей можно дать простые объяснения фактам, установленным другими путями. Например.
1). Входит ли электрон в состав атомного ядра?
Dх = 10-14 м | Размер ядра по порядку величины |
Предположим, что электрон находится в ядре. Найдем неопределенность в его импульсе и примем ее равной самому импульсу | |
МэВ | кинетическая энергия релятивистского электрона в ядре (считаем, что он движется как квант со скоростью с) |
Из опытов по радиоактивному бета-распаду известно, что энергии вылетающих из ядра электронов значительно меньше. Следовательно, в ядре «готовых» электронов нет; электрон образуется в ядре при превращении нейтрона в протон. |
2). Оценим с помощью соотношения неопределенностей энергию связи электрона в атоме водорода.
Dх =0,5 10-10 м | размер атома Н |
импульс электрона, вычисленный с помощью соотношения неопределенности | |
эВ | Энергия нерелятивистского электрона (1 эВ=1,6×10-19 Дж). По порядку величины совпадает с энергией, вычисленной по теории Бора |
3). Найдем предел точности, с которой можно определить частоту и длину волны излучаемого света
время возбужденного атома, спустя это время электрон возвращается на нижележащую орбиту, и атом испускает квант света с энергией Е | |
Гц | предел точности определения частоты излучения, найденный с помощью соотношения неопределенности |
предел точности измерения длины световой волны для зеленого света l=(500,0000000 ± 0,0000002) нм с = 3×108 м/с – скорость света в вакууме |
Уравнение Шрёдингера.
Открытие двойственной природы частиц привело к пониманию о невозможности описывать поведение микрочастиц с помощью классических представлений и законов. Стало ясно, что нельзя говорить о траектории частицы, т.е. о точном ее местоположении в любой момент времени. Появилась новая наука – квантовая механика. Вместо слова траектория частицы было введено понятие о вероятности нахождения частицы в том или ином месте пространства. Для описания поведения микрочастиц Шрёдингер (1926 г) предложил дифференциальное уравнение:
i | нестационарное уравнение Шрёдингера; решение уравнения позволяет найти вероятность нахождения частицы в том или ином мете пространства | |
мнимая единица | ||
m | масса рассматриваемой частицы | |
U(x,y,z,t) | потенциальная энергия частицы, зависящая в общем случае от координат и времени | |
оператор Лапласа (или лапласиан) краткое обозначение математической операции дифференцирования в частных производных; - набла (греч. слово nabla - арфа, символ по форме напоминает этот инструмент) | ||
Y(x,y,z,t) | пси-функция или волновая функция, физического смысла не имеет, но квадрат ее модуля êYê2 – это вероятность нахождения частицы в данном месте пространства (подробнее см. дальше – стационарное уравнение Шрёдингера) | |
Математически уравнение Шрёдингера имеет бесконечное число решений, что физически неприемлемо, поэтому на пси-функцию накладываются дополнительные условия:
1).Пси-функция должна быть:
а) конечной – вероятность не может быть больше 1,
б) непрерывной – вероятность не может внезапно оборваться,
в) однозначной – не может быть две вероятности в одной точке,
2) Производные пси-функции должны быть непрерывны,
3) Пси-функция должна подчиняться условию нормировки:
условие нормировки; смысл его в том, что вероятность обнаружить частицу во всем мыслимом пространстве равна 1. |
В тех случаях, когда потенциальная энергия зависит только от координат и не зависит от времени, т.е U = U (x,y,z), пси-функцию можно представить как произведение двух функций: Y(x,y,z,t) = y ( x,y,z)×j (t). (Y - большая буква пси,
y - малая буква пси, обе функции называются пси- или волновыми функциями.) Подставим в уравнение (i) и, разделим на (y×j).. Получим:
Левая часть уравнения зависит только от t, правая – только от координат, следовательно, каждая из них должна быть равна некоторой постоянной, которую мы обозначим Е. | ||||
j(t) называется временнОй частью пси-функции, со временем она затухает | ||||
Если приравнять константе Е правую часть уравнения, получим:
a | стационарное уравнение Шрёдингера Е – полная энергия частицы, U – потенциальная энергия |
При решении уравнения Шредингера мы
задаем | находим |
U – потенциальную энергию частицы m – массу частицы | y - пси-функцию (собственные функции) Е – полную энергию частицы (собственные значения) |
Решение уравнения с учетом дополнительных условий, накладываемых на пси-функцию, приводит не к любым величинам энергии Е, а к дискретным:
Е1, Е2,…, Еn . В теории Бора электрон мог находиться тоже только в дискретных энергетических состояниях, но при этом была введена искусственно гипотеза о квантовании момента импульса электрона. Уравнение Шрёдингера приводит к квантованию энергии естественно, как математическое решение.
При решении оказывается, что данному энергетическому состоянию частицы могут соответствовать одна или несколько (к) пси-функций. Иначе говоря, при данной энергии Еn частица может вести себя по-разному. Тогда говорят, что уровень Еn к-кратно вырожден и обозначают пси-функцию как Если на систему воздействовать внешним, например магнитным полем, то вырождение снимается, уровень расщепляется на несколько уровней. Практически это обнаруживается в спектрах, вместо одной линии появляются несколько. Например, в спектре атома водорода на приборе с большим разрешением можно обнаружить, что почти все линии спектра являются дублетами.
Рассмотрим подробнее пси-функцию.
y - пси-функция | физического смысла не имеет | |
1/м3 для 3-х-мерного случая | плотность вероятности (квадрат модуля пси-функции) – по смыслу – это вероятность того, что частица находится в единичном объеме в данном месте пространства Р – вероятность. | |
1/м для одномерного случая | --²--…. вероятность того, что частица находится на единичном отрезке… | |
вероятность того, что частица находится в элементарном объеме dV | ||
вероятность того, что частица находится в конечном объеме V | ||
вероятность того, что частица находится во всем пространстве | ||
Уравнение Шрёдингера (a) решается точно только для упрощенных, нереальных случаев, например, электрон в одномерной потенциальной яме. Из реальных объектов уравнение можно решить точно только для атома водорода при использовании сферических координат и для иона в эллиптических координатах. Во всех остальных случаях для решения применяются приближенные методы.
ПРИМЕНЕНИЕ УРАВНЕНИЯ ШРЁДИНГЕРА
Гармонический осциллятор.
В классической физике гармоническим осциллятором называют частицу, совершающую движения по закону синуса или косинуса. Потенциальная энергия такой частицы U = кх2/2, частота колебаний . Посмотрим, к каким результатам приведет решение уравнения Шрёдингера (a), если его применить к одномерной частице, которая обладает такой потенциальной энергией.
уравнение Шрёдингера для гармонического осциллятора Т.к. случай одномерный, оператор Лапласа Dy =d2y / dx2, потенциальная энергияU = кх2/2. |
Мы не приводим решение этого уравнения, т.к. оно выходит далеко за рамки курса. Из решения следует, что полная энергия Е такого осциллятора квантуется:
Полная энергия квантового осциллятора n = 0, 1, 2,…,¥ | |
при n = 0 | Эта величина называется нулевой энергией осциллятора. |
По классическим представлениям при Т ® 0 К энергия должна стремиться к 0, решение уравнения Шрёдингера приводит к выводу о существовании нулевой энергии;
даже при абсолютном нуле (Т= 0 К) частица имеет энергию ¹ 0.
На рис. показаны плотности вероятности при различных энергиях Е осциллятора. Если мы спросим себя, а как ведет себя частица, ведь нам всегда хочется наглядно представить процессы. Ответ – не знаем, ведь квантовый объект имеет двойственную природу. Мы можем только сказать, что частица находится в потенциальной яме, имеет определенный набор энергий и, если ее энергия равна, например Е1, то вероятность обнаружить ее в середине ямы равна нулю. При переходе на другой уровень энергия частицы меняется дискретно, и система поглощает или испускает порцию энергии hn.
Существование нулевой энергии следует также из соотношения неопределенности. Действительно.
соотношение неопределенностей | ||
Dх » А | неопределенность в координате примем равной амплитуде А колебаний | |
Dр » р = mv = mw А | неопределенность в импульсе примем равной самому импульсу; максимальная скорость колебаний v = w А | |
Е - максимальная энергия гармонических колебаний (Е =кх2/2, ) | ||
Таким образом, из соотношения неопределенностей следует, что энергия осциллятора равна .