Характеристики фотопленок, используемых в радиационном контроле.

Характеристики фотопленок, используемых в радиационном контроле. - student2.ru 1. Оптическая проницаемость

Характеристики фотопленок, используемых в радиационном контроле. - student2.ru , где Характеристики фотопленок, используемых в радиационном контроле. - student2.ru - падающий световой поток; Характеристики фотопленок, используемых в радиационном контроле. - student2.ru - прошедший световой поток.

2. Контрастность Характеристики фотопленок, используемых в радиационном контроле. - student2.ru

3. Чувствительность

Характеристики фотопленок, используемых в радиационном контроле. - student2.ru (почернение фиксированное - на 0,85 ед. от первоначального состояния Характеристики фотопленок, используемых в радиационном контроле. - student2.ru ), D - доза излучения.

4. Разрешающая способность

Число пар линий на 1 мм пленки (5-40 пар).

5. Зернистость - визуально оцениваемое

Характеристики фотопленок, используемых в радиационном контроле. - student2.ru впечатление неоднородности.

Ш - ширина кристалла AgBr.

Характеристики фотопленок, используемых в радиационном контроле. - student2.ru

Билет №10

  1. Физические основы методов и технология радиационной дефектоскопии.

Радиационный неразрушающий контроль основан на использовании проникающих свойств ионизирующих излучений и является одним из наиболее эффективных и распространенных видов контроля. В нефтегазовой отрасли применяется прежде всего для контроля сварных соединений магистральных и промысловых трубопроводов, резервуаров для хранения нефти и нефтепродуктов, сосудов под давлением и других объектов. Реализация данного вида контроля предусматривает использование как минимум трех основных элементов: источника ионизирующего излучения; объекта контроля; детектора, регистрирующего результаты взаимодействия ионизирующего излучения с объектом контроля.

В радиационном неразрушающем контроле используют три вида ионизирующих излучений: тормозное Характеристики фотопленок, используемых в радиационном контроле. - student2.ru , гамма- Характеристики фотопленок, используемых в радиационном контроле. - student2.ru и нейтронное Характеристики фотопленок, используемых в радиационном контроле. - student2.ru .

Контроль с применением нейтронного излучения осуществляется только в стационарных условиях. Основными источниками нейтронного излучения являются ускорители заряженных частиц, ядерные реакторы и радиоактивные источники нейтронов. В полевых условиях при эксплуатации или строительстве объекта обычно используют х- или γ-излучения. Источниками х-излучения при этом служат переносные импульсные рентгеновские аппараты, а γ-излучения - радиоактивные источники. С их помощью можно просвечивать стальные изделия толщиной 1...200 мм.

Контрольно-измерительная часть представляет собой группу приборов, которые служат для измерения и регулирования времени, тока, напряжения и частоты. Величина высокого напряжения, подаваемого на электроды рентгеновской трубки, составляет 100...400 кВ. С увеличением напряжения осуществляется смещение максимума излучения в сторону коротких волн, увеличивается проникающая способность излучения.

Рентгеновский излучатель, помимо рентгеновской трубки, включает защитный кожух, заполненный изолирующей средой - трансформаторным маслом или газом под давлением, а также коллиматор - устройство, предназначенное для формирования пучка направленного излучения.

Радиоактивные источники γ-излучения применяются в гамма-дефектоскопии и поставляются в ампулах, транспортируемых в специальных контейнерах. В качестве радиоактивных источников обычно используются изотопы Со60, Se75, Ir192. Появление таких сравнительно дешевых радиоактивных источников привело к созданию специальных комплектов оборудования, названных гамма-дефектоскопами. Различают гамма-дефектоскопы для фронтального и панорамного просвечивания, а также универсальные шланговые гамма-дефектоскопы. Гамма-дефектоскопы первого типа представляют собой лишь излучающую радиационную головку, устанавливаемую в зону контроля и снабженную механизмом открывания и закрывания затвора. Наибольшее применение нашли универсальные приборы шлангового типа, состоящие из радиационной головки, шланга-ампулопровода, пульта управления с механизмом перемещения ампулы с радиоактивным источником по ампулопроводу и коллимирующей насадки. В этих аппаратах ампула радиоактивного источника излучения из радиационной головки подается по ампулопроводу с помощью гибкого троса, приводимого от дистанционного пульта с ручным или электрическим приводом. Наличие дистанционного привода позволяет свести до минимума радиоактивное облучение оператора за счет его удаления от источника излучения на 12 м и более.

В отличие от рентгеновских аппаратов гамма-дефектоскопы могут эксплуатироваться без источников энергии, что особенно важно в полевых условиях. Их также часто применяют для контроля закрытых объектов сложной формы, когда невозможно установить излучатели рентгеновских аппаратов. Недостатками гамма-дефектоскопов являются: необходимость периодической замены источников излучения, потерявших активность, ограниченные возможности по регулированию режимов работы, а также более низкий контраст радиографических снимков по сравнению с рентгеновскими.

Ионизирующие излучения в целом с точки зрения воздействия на организм человека являются наиболее опасными из числа используемых в неразрушающем контроле, поэтому вся аппаратура, применяемая при радиационном контроле, подлежит обязательной сертификации и периодической переаттестации. К работе допускается специально обученный и аттестованный персонал, который подвергается обязательному дозиметрическому контролю.

Из числа радиационных методов для обнаружения и измерения внутренних дефектов в изделии используются методы прошедшего излучения. При прохождении через контролируемое изделие ионизирующее излучение ослабляется за счет его поглощения и рассеяния в материале изделия. Степень ослабления зависит от толщины изделия, химического состава и структуры материала, наличия в нем газовых полостей, сульфидных раскатов и других инородных включений. В результате прохождения ионизирующего излучения через контролируемое изделие детектором фиксируется распределение интенсивности дошедшего до него потока излучения, называемого радиационным изображением изделия. Наличие и характеристики дефектов определяют по плотности полученного радиационного изображения. Равномерная интенсивность излучения, дошедшего до детектора, свидетельствует об отсутствии дефектов. Уменьшение плотности радиационного изображения соответствует увеличению толщины контролируемого изделия, например в зоне сварных швов или брызг (капелек) металла от сварок. В свою очередь увеличение плотности соответствует участкам изделий с меньшей радиационной толщиной, имеющих дефекты. Схема радиационного контроля методом прошедшего излучения.

Характеристики фотопленок, используемых в радиационном контроле. - student2.ru 1 - источник излучения;

2 - объект контроля;

3 - дефект;

4 - детектор (кассета с пленкой);

5 - след от дефекта.

Интенсивность доходящего до объекта излучения Характеристики фотопленок, используемых в радиационном контроле. - student2.ru зависит от исходного потока в точке выхода излучения Характеристики фотопленок, используемых в радиационном контроле. - student2.ru , расстояния а до объекта и особенностей самого излучения:

Характеристики фотопленок, используемых в радиационном контроле. - student2.ru ,

где R и b - константы, определяемые природой излучения.

После прохождения объекта интенсивность попадающего на де­тектор излучения определится из выражения

Характеристики фотопленок, используемых в радиационном контроле. - student2.ru ,

где μ - коэффициент ослабления излучения материалом объекта; δ - толщина объекта; В - фактор так называемого накопления, определяемый экспериментально (при узком пучке лучей В = 1).

В связи с экспоненциальной зависимостью затухания интенсивности ионизирующего излучения чувствительность контроля резко уменьшается с увеличением радиационной толщины, поэтому максимальная глубина контроля ограничена и для переносных аппаратов обычно не превышает 200 мм, что является одним из недостатков радиационного метода контроля.

Кроме того, весьма существенным недостатком является то, что трещины, радиационная толщина которых меньше заданного класса чувствительности, при радиационном методе контроля не выявляются. В первую очередь это относится к трещинам, ориентированным перпендикулярно или под малым углом к направлению ионизирующего излучения.

Методы радиационного контроля прошедшим излучением различаются способами детектирования результатов взаимодействия излучения с объектом контроля и, соответственно, делятся на радиографические, радиоскопические и радиометрические.

Радиографический метод неразрушающего контроля основан на преобразовании радиационного изображения контролируемого объекта в радиографический снимок или записи этого изображения на запоминающем устройстве с последующим преобразованием в световое изображение. Для получения радиографических снимков используют кассеты со специальной радиографической (рентгеновской) пленкой, снабженные для повышения чувствительности усиливающими экранами. В качестве детекторов радиационного изображения используются также полупроводниковые пластины, с которых изображение методом ксерорадиографии переносится на обычную бумагу.

Радиоскопический метод радиационного контроля основан на регистрации радиационного изображения на флуоресцирующем экране или на экране монитора электронного радиационно-оптического преобразователя. Достоинством радиоскопического метода является возможность единовременного контроля изделия под разными углами и, соответственно, стереоскопического видения дефектов.

При радиометрическом методе радиационное изображение преобразуется посредством сканирования в цифровую форму и фиксируется на соответствующем носителе информации - дискете, магнитной ленте. В дальнейшем эта информация переносится в компьютер для последующей обработки и анализа.

Для целей технической диагностики эксплуатируемого оборудования применяют радиографический метод контроля, реализуемый посредством относительно простого переносного комплекта оборудования, позволяющего получить документальное подтверждение результатов контроля в виде радиографического снимка.

  1. Выбор метода вибродиагностики.

При контроле параметров вибрации используют два метода измерения: кинематический и динамический.

Кинематический метод заключается в том, что измеряют координаты точек объекта относительно выбранной неподвижной системы координат. Измерительные преобразователи (ИП), основанные на этом методе измерения, называют преобразователями относительной вибрации.

Динамический метод основан на том, что параметры вибрации измеряют относительно искусственной неподвижной системы отсчета. Такие ИП называют преобразователями абсолютной вибрации. Системы измерения вибрации, использующие в качестве искусственной неподвижной системы отсчета инерционный элемент, связанный с объектом через упругий подвес, называют сейсмическими системами.

ИП бывают контактными и бесконтактными, основанными на разных физических явлениях. По принципу работы ИП абсолютной вибрации разделяют на генераторные и параметрические. Генераторные ИП осуществляют прямое преобразование механической энергии в электрический сигнал. К ним относят пьезоэлектрические, индукционные и др. Источник энергии им не нужен. В параметрических ИП, в отличие от генераторных, происходит изменение соответствующих электрических параметров (сопротивления, емкости, напряжения, индуктивности) под воздействием механических вибрационных колебаний. К параметрическим ИП относят тензорезисторные, емкостные, датчики Холла, индуктивные и др. Параметрическим ИП требуется вспомогательный источник энергии.

Для измерения абсолютной вибрации наибольшее распространение нашли генераторные пьезоэлектрические ИП, обладающие высокой надежностью, большим частотным диапазоном и простым конструктивным исполнением. Для измерения относительной вибрации, например при определении формы орбиты вала в подшипнике скольжения, обычно используются вихретоковые ИП. Перечисленные выше ИП являются контактными и требуют закрепления на исследуемом объекте. При контроле вибрации в труднодоступных местах, в условиях высоких температур, агрессивных сред, повышенной радиации и других специальных условиях могут применяться бесконтактные измерители относительной вибрации. Чаще применяются лазерные бесконтактные ИП.

Наряду с конструктивными особенностями и местом установки на результаты измерений существенное влияние оказывает способ крепления контактных ИП на контролируемом объекте. Соединение ИП с колеблющейся поверхностью имеет определенную упругость, которая, обладая способностью демпфировать энергию колебаний, изменяет уровень и частотный состав вибрации. Поэтому особенности крепления и места установки ИП особо оговариваются в методиках вибродиагностики соответствующих объектов.

Измерения проводят в контрольных точках на элементах машины, которые в максимальной степени реагируют на динамическое состояние, т.е. в которых регистрируемый вибрационный сигнал имеет наибольшую величину. Как правило, такими элементами являются корпуса подшипников. Полную оценку вибрационного состояния крупных агрегатов получают путем измерения вибропараметров в трех взаимно перпендикулярных направлениях (вертикальном, горизонтальном и осевом). Такую оценку обычно производят в период приемочных испытаний и после динамической балансировки машины. В период эксплуатации чаще ограничиваются измерениями в одном или двух направлениях.

При проведении диагностики необходимо учитывать особенности каждого вида оборудования, обусловленные их виброактивностью.

  1. Магнитная толщинометрия.

Защитные свойства покрытия в значительной степени зависят от его толщины. Для неразрушающего контроля толщины диэлектрических (анодноокисных, лакокрасочных, мастичных, пластиковых и др.) и электропроводящих неферромагнитных (цинковых, хромовых, медных, оловянных и др.) покрытий на ферромагнитном основании широко применяются толщиномеры магнитного принципа действия.

Принцип магнитной толщинометрии основан на измерении магнитных полей и их неоднородностей. Для проведения исследований близи объекта измерения от внешнего источника генерируется магнитное поле с известными параметрами. По последующему изменению характеристик магнитного поля и судят о характеристиках данного объекта. Рассмотрим теоретические основы данного явления.

Магнитная индукция В (плотность магнитного потока), возникающая между исследуемым объектом и датчиком прибора, зависит от величины напряженности источника намагничивания Н и магнитной проницаемости среды по следующей зависимости: Характеристики фотопленок, используемых в радиационном контроле. - student2.ru .

В зависимости от значения m все материалы подразделяются на три группы: диамагнетики (m<1), парамагнетики (m>1) и ферромагнетики (m>>1).

Искажение магнитного поля, происходящее вблизи диамагнитных и парамагнитных тел, незначительно и зафиксировать его можно только с помощью высокочувствительных приборов в специально созданных условиях. Однако вблизи ферромагнитных тел магнитное поле искажается весьма существенно, поскольку собственная магнитная проницаемость ферромагнетиков в сотни и тысячи раз превышает m воздуха (mо и m воздуха отличаются незначительно). В связи с этим, применение магнитных методов эффективно только при исследовании ферромагнитных тел. На практике магнитные методы рекомендуются при контроле материалов с показателем m>40.

Плотность магнитного потока и напряженность магнитного поля между исследуемым объектом и датчиком прибора максимальна на поверхности ферромагнетика. С удалением от поверхности В и Н уменьшаются по экспоненциальному закону: Характеристики фотопленок, используемых в радиационном контроле. - student2.ru , где Характеристики фотопленок, используемых в радиационном контроле. - student2.ru - напряженность магнитного поля на расстоянии z от поверхности изделия; Характеристики фотопленок, используемых в радиационном контроле. - student2.ru - напряженность магнитного поля на поверхности ферромагнетика; k - коэффициент затухания, зависящий от ферромагнитных свойств исследуемого материала и характеристик генерируемого магнитного поля.

Определение данной зависимости и является основой магнитной толщинометрии.

Существующие методы магнитной толщинометрии защитных покрытий следует различать прежде всего по способу регистрации изменения магнитных свойств системы «толщиномер - неферромагнитное покрытие - ферромагнитная подложка».

Наиболее известными методами являются пондеромоторный, магнитостатический и индукционный. Последний способ является наиболее современным и, на сегодняшний день, наиболее распространенным.

1. Первоначально широкое распространение получили толщиномеры пондеромоторного принципа действия, работа которых основана на измерении силы отрыва или притяжения постоянных магнитов и электромагнитов к контролируемому объекту. Измерения производят из расчета того, что сила притяжения магнита пропорциональна квадрату индукции в зазоре между ферромагнитным изделием и намагниченым телом. Индукция, как было показано выше, зависит от напряженности поля намагничивания и от величины зазора между магнитом и ферромагнитным изделием. Основной недостаток приборов пондеромоторного принципа действия - цикличность процесса измерения, связанная с необходимостью установки магнита и измерения силы его отрыва в каждой новой точке измерения.

2. Действие магнитостатических толщиномеров основано на определении изменения напряженности магнитного в цепи электромагнита или постоянного магнита при изменении расстояния между ним и ферромагнитным изделием из-за наличия немагнитного покрытия. Информация о толщине покрытия фиксируется магниточувствительными элементами, расположенных либо между полюсами магнита (в магнитной нейтрали), либо около одного из его полюсов. Датчики магнитостатических толщиномеров имеют, таким образом, магнитную основу, что позволяет в процессе проведения измерений «примагничивать» их к поверхности исследуемых деталей. В качестве магниточувствительных элементов могут использоваться такие устройства как рамки с током, магнитные стрелки, феррозонды, датчики Холла и другие.

Характеристики фотопленок, используемых в радиационном контроле. - student2.ru Характеристики фотопленок, используемых в радиационном контроле. - student2.ru

Схема действия магнитостатических толщиномеров:

а - с П-образным электромагнитом; б - со стержневым постоянным магнитом;

1 - электромагнит; 2 - ферромагнитная деталь; 3 - немагнитное покрытие; 4 - преобразователь Холла; 5 -измерительный прибор; 6 - постоянный магнит.

3. При использовании индукционных толщиномеров магнитный поток создается с помощью встроенной в датчик-преобразователь катушки индуктивности. Как и в случае магнитостатических толщиномеров сигналом отклика служит изменение магнитной проницаемости магнитной цепи, состоящей из ферромагнитной основы (деталь), преобразователя прибора и немагнитного зазора между ними. Преобразователь прибора фиксирует изменение магнитной индукции, обусловленной изменением магнитной проводимости среды, и преобразует его посредством индикаторных катушек индуктивности в электрический сигнал.

Билет №11

  1. Диагностирования сосудов, работающих под давлением. Методы течеискания.

Методы течеискания, как и методы капиллярного контроля, относятся к виду неразрушающего контроля проникающими веществами.

Течеисканием называют вид неразрушающего контроля, обеспечивающий выявление сквозных дефектов в изделиях и конструкциях, основанный на проникновении через такие дефекты проникающих веществ. Течами называют канал или пористый участок перегородки, нарушающий ее герметичность, т. е. течи бывают сквозные и пористые. Часто термин «течеискание» заменяют термином «контроль герметичности». Все сосуды, аппараты и трубопроводы нефте-газохимической промышленности, предназначенные для хранения, переработки и транспортировки жидких и газообразных веществ, подлежат испытанию на прочность и герметичность.

Герметичностью называют свойство конструкций препятствовать проникновению через их стенки жидкости, газа или пара. Абсолютно герметичных конструкций не бывает, так как даже при отсутствии течи проникновение пробных веществ через перегородки конструкции может быть обусловлено и чисто диффузными процессами. Поэтому конструкцию называют герметичной, если проникновение газа или жидкости через нее настолько мало, что им можно пренебречь. В условиях эксплуатации вводят понятие нормы герметичности, которое характеризуется суммарным расходом вещества через течи конструкции, при которой сохраняется ее работоспособное состояние.

Герметичность конструкции может быть нарушена вследствие ряда причин:

- химического взаимодействия материала с технологической средой;

- механических повреждений, износа трущихся элементов и уплотнений;

- коррозии металла и сварных соединений;

- раскрытия разъемных соединений или течей, закрытых в нормальном состоянии, из-за температурных деформаций или превышения внутреннего давления;

- деградации свойств конструкционных материалов (основного металла, уплотнений).

В процессе испытаний изделий на герметичность используют пробные, индикаторные и балластные вещества. Пробным называют вещество, проникновение которого через течь обнаруживается при течеискании. Балластные вещества используют для создания большого перепада давления и, соответственно, повышения чувствитель Характеристики фотопленок, используемых в радиационном контроле. - student2.ru ности испытаний при малых концентрациях пробных веществ. Индикаторными называют вещества, применяемые для индикации (обнаружения) выхода пробных веществ через течь на другую сторону конструкции (проявитель, люминофоры).

В качестве пробных веществ применяют жидкости, газы, пары легколетучих жидкостей. В зависимости от пробного вещества методы разделяют на жидкостные или газовые. Шире используют газы, обеспечивающие более высокую чувствительность. В качестве пробных применяют, как правило, инертные газы (гелий, аргон), имеющие низкое содержание в атмосфере и не взаимодействующие с материалом объекта контроля или веществом внутри него. Роль пробного вещества может также выполнять газ, заполняющий контролируемый объект при эксплуатации или хранении (фреон, хлор, аммиак).

В некоторых случаях в качестве пробных веществ применяют легколетучие жидкости: спирт, ацетон, бензин, эфир. Обычно индикаторы улавливают пары этих жидкостей, тогда способы контроля такими жидкостями относят к газовым.

К жидким пробным веществам относят воду, применяемую при гидроиспытаниях (гидроопрессовке), воду с люминесцирующими добавками, облегчающими индикацию течей, а также смачивающие жидкости - пенетранты.

Для количественной оценки течи при применении жидкости в качестве пробного вещества используют объем жидкости, проникающей через течь в единицу времени. При использовании газовых пробных веществ количественную оценку производят в единицах мощности.

При контроле герметичности конструкции обычно (за исключением случаев использования пенетрантов) создают по ее сторонам разность давлений. Количество газа q, Н·м, определяют по формуле

Характеристики фотопленок, используемых в радиационном контроле. - student2.ru ,

где р - давление газа, Па или Н/м2; V - объем газа, м3.

Поток газа Q, Вт, через течь равен количеству газа за единицу времени t

Характеристики фотопленок, используемых в радиационном контроле. - student2.ru .

Физический смысл того, что поток измеряется в единицах мощности, состоит в том, что произведение давления на объем - энергия, запасенная в газе, а изменение энергии во времени - мощность.

Для контроля герметичности различных конструкций с помощью пробных веществ (за исключением пенетрантов) необходимо создание разности давлений по разные стороны их стенок. При этом помимо пробных веществ требуются устройства для создания и измерения разности давлений (компрессоры, насосы, манометры и др.), а также средства обнаружения выхода пробного вещества через течи. Для обнаружения течей применяют как специальные приборы - течеискатели, так и неприборные средства, например используют люминесцирующие вещества или методы капиллярного контроля.

Объекты нефтегазовой промышленности, контролируемые методами течеискания, являются незамкнутыми и позволяют воздействовать как на их внешнюю, так и внутреннюю поверхности. Соответственно по способу создания разности давлений различают схему с внутренним и внешним избыточным давлением. При этом не обязательно создавать по разные стороны конструкции разности абсолютных давлений газовой смеси. Достаточно разности парциального давления пробного газа.

Способ, при котором для создания разности давлений объект контроля откачивают, называют вакуумным. Способ, предусматривающий создание внутреннего избыточного давления выше атмосферного, называют опрессовкой. При опрессовке газом внутреннее давление принимается всегда значительно ниже расчетного по условию прочности, что обусловлено возможными катастрофическими последствиями от разрыва объекта контроля. При гидроопрессовке разлет осколков не происходит и ее проводят с давлением на 25...50 % выше номинального рабочего. Обязательным условием при этом является отсутствие воздушных скоплений («подушек», «пробок»). Поэтому перед гидроопрессовкой воздух из невентилируемых полостей откачивают, а из вентилируемых выпускают через вентиль, установленный в верхней части полости (воздушник).

И для опрессовки, и для вакуумного способа возможны две схемы контроля: интегральная и локальная. При интегральной схеме анализируют состав и количество газа, проникающего в объект контроля извне или, наоборот, изнутри. При локальной схеме поиска каждую течь обнаруживают отдельно с помощью щупа, улавливающего появление пробного газа, вакуумной камеры-присоски или визуально.

Для обнаружения течей могут одновременно или последовательно использоваться несколько методов течеискания. При контроле герметичности в обязательном порядке используют прежде всего методы, реализующие интегральную схему контроля. На практике наибольшее применение нашел манометрический метод, отличающийся максимальной простотой, доступностью и позволяющий установить наличие или отсутствие течи во всем объеме контролируемой конструкции, а также ее величину. Установление местоположения течей производят с использованием методов, реализующих локальную схему контроля. Ниже коротко рассматривается сущность некоторых из них.

  1. Теорема Снеллиуса.

Трансформация (расщепление и изменение типа) ультразвуковых волн происходит при прохождении ими границы раздела двух сред под некоторым углом. При падении волны на границу раздела сред в общем случае часть энергии проходит во вторую среду, а часть отражается в первую. При нормальном падении (перпендикулярном поверхности раздела) расщепления и изменения типа волны не происходит и та часть энергии, которая проходит во вторую среду, распространяется в ней в том же направлении.

Коэффициент отражения R, характеризующий интенсивность отраженной волны, зависит от акустического сопротивления первой Характеристики фотопленок, используемых в радиационном контроле. - student2.ru и второй Характеристики фотопленок, используемых в радиационном контроле. - student2.ru сред и определяется по формуле

Характеристики фотопленок, используемых в радиационном контроле. - student2.ru .

Коэффициент отражения R не зависит от угла падения волны и растет с увеличением разницы акустических сопротивлений сред. Явление отражения ультразвуковой волны от границы перехода в среду с малым акустическим сопротивлением широко используется в ультразвуковой дефектоскопии. Например, при переходе ультразвуковой волны из стали в воздух интенсивность отраженной волны составляет более 90%. Аналогичный эффект возникает при обнаружении внутри металла областей (объемов) с малым акустическим сопротивлением: газовых пузырей, пустот, инородных включений и других несплошностей. Для получения заметного отражения достаточно, чтобы размеры несплошности были соизмеримы с длиной волны. При меньших размерах волна огибает несплошность без существенного отражения.

Переход ультразвуковой волной границы раздела двух сред под некоторым углом сопровождается как отражением и преломлением, так и трансформацией: расщеплением падающей волны и появлением иных типов волн. Так, при падении из первой среды продольной волны Характеристики фотопленок, используемых в радиационном контроле. - student2.ru на границу раздела сред под некоторым углом Характеристики фотопленок, используемых в радиационном контроле. - student2.ru в общем случае могут возникнуть еще четыре волны. Схема их образования приведена на рис. ниже, где Характеристики фотопленок, используемых в радиационном контроле. - student2.ru - падающая и отраженная продольная волна; Характеристики фотопленок, используемых в радиационном контроле. - student2.ru - отраженная поперечная (трансформированная) волна; Характеристики фотопленок, используемых в радиационном контроле. - student2.ru - преломленная продольная волна; Характеристики фотопленок, используемых в радиационном контроле. - student2.ru - преломленная поперечная волна.

Все углы отсчитываются от перпендикуляра к границе в точке раздела волн. Углы прохождения волн во второй среде (углы преломления) определяются ее акустическим сопротивлением. С увеличением угла падения Характеристики фотопленок, используемых в радиационном контроле. - student2.ru углы преломления Характеристики фотопленок, используемых в радиационном контроле. - student2.ru и Характеристики фотопленок, используемых в радиационном контроле. - student2.ru увеличиваются. Углы падения, отражения и преломления связаны со скоростью распространения этих волн соотношением (законом Снелиуса)

Характеристики фотопленок, используемых в радиационном контроле. - student2.ru .

При увеличении Характеристики фотопленок, используемых в радиационном контроле. - student2.ru до 90° продольная волна во второй среде исчезает. Значение угла падения Характеристики фотопленок, используемых в радиационном контроле. - student2.ru в этом случае называют первым критическим углом Характеристики фотопленок, используемых в радиационном контроле. - student2.ru (см. рис.). Значение угла падения, при котором во второй среде исчезает и поперечная волна ( Характеристики фотопленок, используемых в радиационном контроле. - student2.ru ) называют вторым критическим углом Характеристики фотопленок, используемых в радиационном контроле. - student2.ru .

Характеристики фотопленок, используемых в радиационном контроле. - student2.ru Если среда I - оргстекло, среда II - сталь, то:

Характеристики фотопленок, используемых в радиационном контроле. - student2.ru при Характеристики фотопленок, используемых в радиационном контроле. - student2.ru

Характеристики фотопленок, используемых в радиационном контроле. - student2.ru при Характеристики фотопленок, используемых в радиационном контроле. - student2.ru

Т.о. диапазон прозвучивания поперечной волной для наклонного датчика Характеристики фотопленок, используемых в радиационном контроле. - student2.ru .

При Характеристики фотопленок, используемых в радиационном контроле. - student2.ru прозвучивания происходит продальной волной.

  1. Прогнозирование остаточного ресурса оборудования

Билет №12

  1. Технологии ультразвукового контроля.

Ультразвуковой контроль (УЗК) относится к акустическому виду неразрушающего контроля, основанному на анализе результатов взаимодействия звуковых волн с объектом контроля (ОК) => УЗК относится к методам активного контроля (подразумевает воздействие на ОК и последующий анализ изменения первичного воздействия для характеристики дефектов).

Все многообразие акустических методов неразрушающего контроля основано на взаимодействии упругих сред (жидких, твердых и газообразных) с акустическими колебаниями и волнами. Они отличаются способами возбуждения колебаний и их регистрацией.

Из числа акустических методов чаще всего применяют ультразвуковую дефектоскопию (УЗД), ультразвуковую толщинометрию (УЗТ) и акустико-эмиссионный неразрушающий контроль. На УЗД в мировой практике приходится в настоящее время 60 % всего объема неразрушающего контроля.

Различные методы ультразвукового контроля отличаются схемами установки излучателя и приемника ультразвуковых колебаний, их положением относительно объекта контроля. Применяют:

Эхо-метод Теневой метод (нет мертвой зоны) Эхо-теневой метод
Характеристики фотопленок, используемых в радиационном контроле. - student2.ru Характеристики фотопленок, используемых в радиационном контроле. - student2.ru Характеристики фотопленок, используемых в радиационном контроле. - student2.ru
Дельта метод Эхо-зеркальный метод  
Характеристики фотопленок, используемых в радиационном контроле. - student2.ru Характеристики фотопленок, используемых в радиационном контроле. - student2.ru и другие (зеркально-теневой).

Наиболее широкое распространение получил импульсный эхо-метод, основанный на отражении УЗ колебаний от несплошности и приеме отраженных эхо-сигналов. Амплитуда эхо-сигнала на экране дефектоскопа при этом будет пропорциональна размерам дефекта.

  1. Алгоритм проведения технического диагностирования объектов.

Характеристики фотопленок, используемых в радиационном контроле. - student2.ru

1. АТД – анализ технической (научно-технической) документации (ОСТ, ГОСТ, ТР, ТУ, СНиП, РД, ВСН);

2. ППР – план производства работ;

3. ТР – контроль технического регламента;

4. ЭО – экспертное обследование;

5. СН – снижение нагрузок;

6. Р – ремонт;

7. Д – демонтаж.

  1. Фильтрующие суспензии для капиллярного контроля.

Капиллярный контроль - неразрушающий контроль проникающими веществами основан на проникновении веществ в полости дефектов контролируемого объекта для выявления поверхностных дефектов.

С применением фильтрующихся суспензий контролируют конструкции, изготовленные из пористых материалов. Суспензия в своем составе помимо проникающей жидкости содержит цветные, люминесцентные или люминесцентно-цветные вещества размером от тысячных до сотых долей миллиметра. Проникающая жидкость при нанесении ее на контролируемую поверхность поглощается пористым материалом. Поглощение происходит наиболее интенсивно в зоне дефектов, при этом взвешенные частицы, размер которых превышает размер пор, отфильтровываются и осаждаются над дефектом. Места скопления отфильтрованных частиц легко обнаруживаются за счет контраста на фоне поверхности контролируемого объекта.

Билет №13

  1. Физические основы методов и технология радиационной дефектоскопии.

Радиационный неразрушающий контроль основан на использовании проникающих свойств ионизирующих излучений и является одним из наиболее эффективных и распространенных видов контроля. В нефтегазовой отрасли применяется прежде всего для контроля сварных соединений магистральных и промысловых трубопроводов, резервуаров для хранения нефти и нефтепродуктов, сосудов под давлением и других объектов. Реализация данного вида контроля предусматривает использование как минимум трех основных элементов: источника ионизирующего излучения; объекта контроля; детектора, регистрирующего результаты взаимодействия ионизирующего излучения с объектом контроля.

В радиационном неразрушающем контроле используют три вида ионизирующих излучений: тормозное Характеристики фотопленок, используемых в радиационном контроле. - student2.ru , гамма- Характеристики фотопленок, используемых в радиационном контроле. - student2.ru и нейтронное Характеристики фотопленок, используемых в радиационном контроле. - student2.ru .

Контроль с применением нейтронного излучения осуществляется только в стационарных условиях. Основными источниками нейтр

Наши рекомендации