Кинематика криволинейного движения
Основные законы и формулы
1.Простейшим видом криволинейного движения является равномерное движение точки по окружности. При таком движении угловая скорость
где – угол поворота.
2.Полное ускорение точки при этом тангенциальное ускорение нормальное (центростремительное) ускорение
3.В случае равномерного вращательного движения угловая скорость может быть выражена формулой:
где Т – период вращения; – частота вращения.
4.Угловая скорость связана с линейной скоростью соотношением:
.
5.Для характеристики переменного вращательного движения вводят угловое ускорение :
При равнопеременном вращательном движении ( ) будем иметь:
Тангенциальное и нормальное ускорения могут быть выражены через угловую скорость и ускорение следующим образом:
Примеры решения задач
Пример 1.Сравнить линейные скорости и центростремительные ускорения точек земной поверхности на экваторе и на широте . Радиус Земли R принять равным 6400 км.
Решение.Линейная скорость любой точки на экваторе
где Т=24 ч=86400 с – период суточного вращения Земли.
Центростремительное ускорение определяется следующим образом:
На широте (рис. 1) будем иметь:
Рис. 1
Чтобы сравнить величины линейных скоростей и центростремительных ускорений, необходимо найти следующие отношения:
Пример 2.Колесо вращается с постоянным угловым ускорением Через 0,5 с после начала движения полное ускорение колеса см/с2. Чему равен радиус колеса?
Решение.Полное ускорение
.
Используя формулы связи линейных и угловых характеристик, можно записать:
Тогда
Угловую скорость определим так:
но , поэтому Следовательно,
откуда
Пример 3.Автомобиль движется по закруглению шоссе, имеющемурадиус кривизныR= 50 м. Уравнение движенияавтомобиля s= A+Bt+Ct2, где А=10 м, В=10 м/с, м/с2. Найти скорость автомобиля, его тангенциальное, нормальное и полное ускорение в момент времени t=5c.
Решение. Прежде всего находим общее выражение для скорости автомобиля. Известно, что
Взяв производную по времени от заданного уравнения пути s, получим:
Подставив сюда значения постоянных В и С, а также заданное значение времени, найдем скорость:
Теперь находим общее выражение для тангенциального ускорения. Из теории известно, что
Взяв производную по времени от общего уравнения скорости и подставив значения постоянной С и времени, получим
Полученное выражение для тангенциального ускорения не содержит времени; это значит, что тангенциальное ускорение постоянно по величине, поэтому движение автомобиля является равнозамедленным.
Значение нормального ускорения найдем, подствив в общее уравнение его известные значения скорости и радиуса кривизны траектории:
м/с2.
Полное ускорение будет равно геометрической сумме взаимно препендикулярных тангенциального и нормального ускорений:
м/с2.
Направление полного ускорения можно определить, если найти угол, образуемый полным ускорением с направлением нормального ускорения:
Пример 4.Вал начинает вращаться и в первые 10 с совершает 50 оборотов. Считая вращение вала равноускоренным, определить угловое ускорение и конечную угловую скорость.
Решение.Поскольку начальная угловая скорость равна нулю, уравнение движения и формула угловой скорости примут вид:
; .
Так как угловое перемещение, соответствующее одному полному обороту вала, равно , то полное угловое пермещение, соответствующее N оборотам, . Подставив это выражение в уравнение движения, получим , откуда
; рад/с2.
Зная значение , вычислим конечную угловую скорость вращения:
; =62,8 рад/с.