Моделирование элементарной ячейки реактора

Цель работы: изучение распределения потока тепловых нейтронов в элементарной ячейке реактора с использованием моделирования на электрической сеточной модели

Теоретические основы

Распределение потока тепловых нейтронов в элементарной ячейке гетерогенного реактора достаточно хорошо описывается одногрупповыми диффузионными уравнениями:

в замедлителе –

моделирование элементарной ячейки реактора - student2.ru , (1)

в топливе –

моделирование элементарной ячейки реактора - student2.ru , (2)

где DM и DF – коэффициенты диффузии в замедлителе и в топливе; моделирование элементарной ячейки реактора - student2.ru и моделирование элементарной ячейки реактора - student2.ru – сечения поглощения нейтронов в замедлителе и в топливе; q – плотность замедления при тепловой энергии.

Граничные условия для системы (1) и (2) записываются следующим образом:

на границе топлива и замедлителя –

моделирование элементарной ячейки реактора - student2.ru ; (3)

на границе ячейки –

моделирование элементарной ячейки реактора - student2.ru , (4)

где n- нормаль к границе ячейки.

При расчете ячейки применяют метод эквивалентной ячейки, в котором производится переход от реальной геометрической формы ячейки к цилиндрической. Если затем решить уравнения (1) и (2) для двухзонной эквивалентной ячейки, то для распределения нейтронного потока в блоке горючего и в замедлителе получается следующие:

моделирование элементарной ячейки реактора - student2.ru , (5)

моделирование элементарной ячейки реактора - student2.ru , (6)

моделирование элементарной ячейки реактора - student2.ru

где RF– радиус блока горючего, RM – радиус эквивалентной ячейки, моделирование элементарной ячейки реактора - student2.ru , моделирование элементарной ячейки реактора - student2.ru .

моделирование элементарной ячейки реактора - student2.ru Деформация ячейки в методе эквивалентной ячейки приводит к искажению действительной картины распределения нейтронного потока в замедлителе и, следовательно, к определенной погрешности при вычислении коэффициента использования тепловых нейтронов. Погрешность эта становится существенной для «тесных» решеток. С определенными затруднениями связан расчет ячеек сложной формы, многозонных, со сборками ТВЭЛ.

моделирование элементарной ячейки реактора - student2.ru Моделирование на электрической сеточной модели позволяет сравнительно легко получить распределение нейтронного потока в ячейке реальной формы.

Для того, чтобы использовать уравнения (1) и (2) в сеточной модели, их нужно предварительно преобразить в конечно-разностную форму и перейти к безразмерным функциям моделирование элементарной ячейки реактора - student2.ru и моделирование элементарной ячейки реактора - student2.ru . Для узлов (i, k) в замедлителе и (j, l) в блоке горючего эти уравнения запишутся следующим образом (см. рис. 1) :

моделирование элементарной ячейки реактора - student2.ru , (7)

моделирование элементарной ячейки реактора - student2.ru , (8)

где моделирование элементарной ячейки реактора - student2.ru – безразмерный поток нейтронов; моделирование элементарной ячейки реактора - student2.ru – базисное значение потока, hM и hF – шаг сетки в замедлителе и топливе.

Моделирующее устройство и выбор параметров элементов этого устройства. Для решения уравнений (7) и (8) применяется специализированное вычислительное устройство, содержащее электрическую сеточную модель из двух типов ячеек (рис. 2).

 
  моделирование элементарной ячейки реактора - student2.ru

Первый тип ячейки (рис. 2а) применяется для моделирования распределения нейтронного потока в замедлителе. Токи в сопротивлениях RM моделируют диффузию в замедлителе, в сопротивлениях моделирование элементарной ячейки реактора - student2.ru – поглощение нейтронов, в сопротивлениях моделирование элементарной ячейки реактора - student2.ru – источники тепловых нейтронов.

Ячейки второго типа (рис. 2б) предназначены для моделирования распределения нейтронного потока в топливе. Токи в сопротивлениях моделирование элементарной ячейки реактора - student2.ru моделируют диффузию в топливе, в сопротивлениях моделирование элементарной ячейки реактора - student2.ru – поглощение нейтронов.

Потенциалы узловых точек сетки моделирование элементарной ячейки реактора - student2.ru пропорциональны величинам нейтронного потока моделирование элементарной ячейки реактора - student2.ru в соответствующих точках физической ячейки. Источники нейтронов (третий член уравнения (7)) моделируется токами моделирование элементарной ячейки реактора - student2.ru , подводимыми в узловые точки ячеек сеточной модели в области замедлителя.

Уравнения Кирхгофа, записанные для узлов ячеек сетки, изображенных на рис. 2, имеют следующий вид:

моделирование элементарной ячейки реактора - student2.ru , (9)

моделирование элементарной ячейки реактора - student2.ru . (10)

После перехода к безразмерным величинам уравнения запишутся следующим образом:

моделирование элементарной ячейки реактора - student2.ru , (11)

моделирование элементарной ячейки реактора - student2.ru , (12)

где моделирование элементарной ячейки реактора - student2.ru и моделирование элементарной ячейки реактора - student2.ru – безразмерные потенциалы; моделирование элементарной ячейки реактора - student2.ru и моделирование элементарной ячейки реактора - student2.ru –безразмерные сопротивления; моделирование элементарной ячейки реактора - student2.ru , моделирование элементарной ячейки реактора - student2.ru – базисные значения величин (выбираются произвольно).

Уравнения (7) и (8) и уравнения (11) и(12) имеют одинаковую форму, следовательно, распределение потенциалов в узлах сетки будет соответствовать распределению нейтронного потока в ячейке ( моделирование элементарной ячейки реактора - student2.ru ), если выполнить условие равенства коэффициентов в соответствующих членах уравнений (7) и (8) и уравнений (11) и (12). Приравнивая коэффициенты, получим условия моделирования:

моделирование элементарной ячейки реактора - student2.ru ; моделирование элементарной ячейки реактора - student2.ru ; (13)

моделирование элементарной ячейки реактора - student2.ru ; (14)

моделирование элементарной ячейки реактора - student2.ru ; моделирование элементарной ячейки реактора - student2.ru . (15)

Если Ei,k>>Vi,k, то вторым членом ( моделирование элементарной ячейки реактора - student2.ru ) в условии (14) можно пренебречь. Для этого сопротивления моделирование элементарной ячейки реактора - student2.ru нужно выбрать достаточно большими. Для упрощения модели удобно принять моделирование элементарной ячейки реактора - student2.ru

В работе моделируется квадратная ячейка уран-водного реактора со следующими характеристиками: размер ячейки (шаг решетки) – а = 3 см, диаметр ТВЭЛ – d = 1,2 см, обогащение урана – 5 %; моделирование элементарной ячейки реактора - student2.ru = 0,164 см; моделирование элементарной ячейки реактора - student2.ru = 0,022 см-1; моделирование элементарной ячейки реактора - student2.ru = 0,174 см; моделирование элементарной ячейки реактора - student2.ru = 1,49 см-1; моделирование элементарной ячейки реактора - student2.ru = 7,45 см2; моделирование элементарной ячейки реактора - student2.ru = 0,425 см-1; моделирование элементарной ячейки реактора - student2.ru = 0,23 см2.

Шаг сетки моделирование элементарной ячейки реактора - student2.ru 0,15 см. Базисное значение моделирование элементарной ячейки реактора - student2.ru = 1,2 ком. Величины сопротивлений в модели: моделирование элементарной ячейки реактора - student2.ru 1,1 ком, моделирование элементарной ячейки реактора - student2.ru 363 ком, моделирование элементарной ячейки реактора - student2.ru 230 ом, моделирование элементарной ячейки реактора - student2.ru 2,35 ком.

моделирование элементарной ячейки реактора - student2.ru Схема моделируемой ячейки и расположение узловых точек показаны на рис. 3. Наличие симметрии позволяет моделировать моделирование элементарной ячейки реактора - student2.ru часть ячейки.

Величины сопротивлений в граничных узловых точках (1-11) подсчитываются с учетом их расположения относительно границы топливо-замедлитель. На внешних границах области моделирования, т.е. при моделирование элементарной ячейки реактора - student2.ru , моделирование элементарной ячейки реактора - student2.ru , моделирование элементарной ячейки реактора - student2.ru , моделирование элементарной ячейки реактора - student2.ru выполнено граничное условие (4), что соответствует на модели отсутствию электрических токов между соответствующими узлами.

Наши рекомендации