Определение электромагнитной обстановки на объектах электроэнергетики
Общие положения
Методика определения ЭМО предусматривает проведение измерений и расчетов, необходимых для получения данных о максимально возможных уровнях электромагнитных воздействий (электромагнитные поля, наведенные токи и напряжения, кондуктивные электромагнитные помехи, разряды статического электричества и др.) на устройства релейной защиты и технологического управления электроэнергетических объектов при нормальных и аварийных режимах.
При определении ЭМО на действующем энергообъекте необходимо применять сочетание экспериментальных методов (натурные эксперименты и имитация электромагнитных возмущений) и численный анализ.
Для получения достоверных результатов при численном анализе необходимо использовать результаты экспериментов, так как невозможно точно математически смоделировать реальный объект и ошибки могут быть существенные.
С помощью натурных экспериментов на действующем объекте нельзя воспроизвести все возможные режимы, например, короткие замыкания на шинах высокого напряжения или удары молнии. К тому же проведение натурных экспериментов, нарушающих нормальную работу энергообъекта, например, коммутации силовым оборудованием или измерения в цепях устройств релейной защиты, ограничиваются по условиям работы энергообъекта отдельными разовыми экспериментами, как правило, не самыми опасными с точки зрения уровней электромагнитных помех в системах релейной защиты и технологического управления.
Имитация электромагнитных возмущений позволяет существенно расширить возможности по определению уровней электромагнитных помех экспериментальным путем. Однако существуют определенные ограничения и по проведению имитационных испытаний на действующем объекте.
В результате работы должны быть определены максимальные значения воздействий на системы релейной защиты и технологического управления при любом нормальном и аварийном режиме. Требование эксплуатации: системы релейной защиты и технологического управления должны работать правильно при любом нормальном и аварийном режимах. Без численного анализа может быть упущен аварийный режим, при котором помехи будут максимальными и одновременно реальными.
Экспериментальная часть работы в основном проводится на действующем объекте. Методика экспериментов и технические средства (например, имитаторы воздействий и измерительные приборы) должны быть такими, чтобы не мешать нормальной работе объекта и не повреждать имеющиеся на объекте устройства.
Основные этапы проведения работ по определению электромагнитной обстановки
Работы по определению ЭМО на энергообъекте включает в себя следующие этапы:
-получение исходных данных об энергообъекте для проведения работ;
-экспериментально-расчетное определение ЭМО на объекте;
-определение соответствия между уровнями помехоустойчивости устройств и ЭМО на объекте.
Исходные данные и состав работ по определению ЭМО на объекте
На действующих объектах исходные данные, необходимые для расчетно-экспериментального определения ЭМО, могут быть получены непосредственно на объекте, а также при анализе проектных решений и техдокументации на устройства релейной защиты и системы технологического управления.
Для того, чтобы определить уровни электромагнитных воздействий на системы релейной защиты и технологического управления при коммутациях, работе разрядников и при коротких замыканиях на шинах высокого напряжения, необходимо знать:
- электрическую схему и взаимное расположение первичных цепей; трассы прокладки кабелей и их марку;
- тип и расположение силового оборудования;
- фирму-изготовитель, назначение и место расположения устройств релейной защиты и системы технологического управления.
Необходимо иметь данные по заземляющему устройству объекта:
-исполнительную схему;
- удельное сопротивление грунта и импульсное сопротивление заземления оборудования, к которому подходят кабели от устройств релейной защиты и системы технологического управления.
Как правило, эти данные могут быть получены лишь экспериментальным путем. Методика диагностики заземляющих устройств энергообъектов представляет самостоятельную задачу.
На исполнительной схеме заземляющего устройства должны быть показаны молниеприемники и схема их заземления, а также трассы прокладки кабелей систем релейной защиты и технологического управления. Для зданий и сооружений необходимо иметь схему токоотводов и заземлителей молниеприемников.
В качестве исходных данных для определения воздействий токов и напряжений промышленной частоты необходимо иметь сведения о токах короткого замыкания на землю (токи 3I0). При коротком замыкании на шинах высокого напряжения важно знать не только суммарный ток короткого на землю, но и составляющие этого тока (токи с линий 3I0 и токи 3I0 от трансформаторов). Например, при коротком замыкании на землю на шинах 500 кВ одной из подстанций суммарный ток 3I0 = 10300 А, ток от автотрас-форматора 4АТ - 3I0 = 3100 А, ток от автотрансформатора 5АТ - 3100 А, ток от линии ВЛ-1 - 3I0 = 2500 А, ток от линии ВЛ-2 - 3I0 = 1500 А.
Удельное сопротивление грунта определяется, как правило, экспериментально методом вертикального электрического зондирования в виде зависимости удельного сопротивления ρ от глубины h (рис.5.1.).
Обычно результаты измерений приводятся к двухслойной модели, используя методы математической обработки (например, метод наименьших квадратов). Возможно определение удельного сопротивления грунта на основании данных о геоподоснове территории объекта и справочных данных об удельном сопротивлении различных грунтов.
Для определения воздействий электромагнитных полей радиочастотного диапазона необходимо иметь сведения об используемых на данном объекте радиопередающих устройствах (стационарных и переносных).
Анализ возможных уровней электромагнитных воздействий по сети электропитания постоянным и переменным током проводится на основе исполнительной схемы электропитания объекта, данных о типе и месте расположения устройств, включенных в систему электропитания (в особенности, электромеханических устройств) и данных о трассе прокладки и типе соединительных кабельных линий.
На этом этапе составляется рабочая программа проведения экспериментальных работ на энергообъекте.
Рис. 5.1 Удельное сопротивление грунта
При проведении непосредственных измерений на объекте определяются напряженности электромагнитных полей радиочастотного диапазона, напряженность поля промышленной частоты при нормальных режимах работы, импульсные помехи в цепях постоянного и переменного тока, качество электропитания постоянным и переменным током устройств релейной защиты и системы технологического управления, характеристики покрытий полов и электрические потенциалы тела человека от заряда статического электричества.
Путем проведения непосредственных измерений на объекте определяются некоторые характеристики первичного оборудования, цепей вторичной коммутации и устройств релейной защиты и системы технологического управления (амплитудно-частотная характеристика высокочастотной составляющей тока шин и кабелей высокого напряжения, емкость на землю оборудования, входные параметры терминалов). Также проводится тестирование расчетов (например, при проведении измерений помех во время коммутаций разъединителями и выключателями).
При имитации электромагнитных возмущений определяются помехи, связанные с ударами молнии, короткими замыканиями, коммутациями в первичных цепях. После измерений производится пересчет полученных значений к реальным воздействиям.
Кроме того, при имитации электромагнитных возмущений определяются некоторые параметры (например, коэффициент экранирования кабелей), которые, как правило, невозможно определить расчетным путем.
Расчеты используются для определения наиболее опасных режимов, для пересчета результатов измерений, полученных с использованием имитаторов электромагнитных воздействий, к реальным воздействиям и для определения оптимальных мероприятий по улучшению ЭМО. При проведении расчетов используются математические модели и специальные программы для ПЭВМ.