Пассивные помехоподавляющие и защитные компоненты
Обзор
При обеспечении электромагнитной совместимости во многих случаях необходимо ослабить эмиссию помех, обусловленную гальваническими связями с источниками, или проникновение таких помех через чувствительный элемент, предотвратить возникновение перенапряжений в потенциальных источника помех и ограничить опасные для изоляции перенапряжения или для функционирования напряжения помех, а также ослабить излучаемые источником электромагнитные поля и предотвратить проникновение этих полей через чувствительные элементы. Для этого используются пассивные помехоподавляющие устройства в виде фильтров, ограничителей напряжения и экранов. В зависимости от решаемой задачи они могут быть установлены непосредственно у чувствительного элемента (рис. 4.1, б) или у источника (рис. 4.1, в). Наглядно защитное действие таких компонентов представляется в виде отношения z/zr.
Рис. 4.1. Взаимные расположения источника помех Q, приемника S и защитного компонента Е: а - защита отсутствует; б - защита приемника; в - подавление помехи х у источника |
Фильтры
Принцип действия
Помехоподавляющие фильтры представляют собой элементы для обеспечения затухания поступающей по проводам помехи. Целесообразное их применение предполагает, что спектральные составляющие полезного сигнала и помехи достаточно отличаются друг от друга. Это позволяет при соответствующих параметрах фильтра обеспечить селективное демпфирование помехи при отсутствии заметного искажения полезного сигнала. При этом собственно эффект демпфирования достигается делением напряжения. Поясним эго на простейшем примере.
Если в низкочастотный контур полезного сигнала (полезные величины на рис. 4.2, а) поступает высокочастотное напряжение помехи , то на полном сопротивлении приемника появляется составляющая напряжения помехи
(4.1)
Введение зависящего от частоты продольного полного сопротивления (рис. 4.2, б), например, в форме ωL, представляющего для низкочастотного тока - очень малое, а для высокочастотного тока - очень большое сопротивление, обеспечивает ослабление помехи, и составляющая, напряжения помехи снижается до
(4.2.)
Достигаемый эффект затухания можно характеризовать коэффициентом затухания - отношением падений напряжений на при наличии и без него:
. (4.3.)
Коэффициент затухания приводится, как правило, в виде логарифма отношения напряжений и выражается в децибелах:
. (4.4)
Рис. 4.2. Цепь без фильтра (а) и с фильтром (б) | Рис. 4.3. Токовый контур с фильтром |
Согласно (4.3) эффект затухания зависит не только от , но и от полных сопротивлений и .
В общем случае, фильтр F любой структуры представляет собой четырехполюсник, объединяющий источник помехи и приемник (рис. 4.3). Для расчета фильтра пригодны известные соотношения:
(4.5)
(4.6)
Где - комплексные параметры четырехполюсника.
Их конкретные значения для простейших фильтровых структур представлены в табл. 4.1.
Далее (рис. 4.3) можно записать:
(4.7)
(4.8)
Напряжение на входе приемника без фильтра определяется как
(4.9)
Аналогично (4.4) ослабление сигнала в фильтре описывает как логарифм отношения напряжений на входе приемника без фильтра и с фильтром :
. (4.10)
Коэффициент затухания в фильтре любой структуры в соответствии с (4.5)-(4.10) можно выразить как
. (4.11)
Таблица 4.1.
Параметры четырехполюсников простейших схем фильтров
Схема | Коэффициент | |||
Таблица 4.1. (Продолжение)
Отсюда следует, что коэффициент затухания зависит, с одной стороны от параметров фильтра (см. табл. 4.1), а с другой - от полных сопротивлений участвующих в процессе источника и приемника помех, что уже отмечалось в связи с обсуждением (4.4). Коэффициент затухания в зависимости от конкретных условий может иметь сильно различающиеся значения для одного и того же фильтра (рис. 4.4).
Рис. 4.4. Кажущееся сопротивление электроэнергетических сетей: 1 - жилые территории с воздушными линиями электропередачи; 2 – публикация 3 CISFR; 3 – промышленные сети; 4 - жилые территории с кабельными линиями |
Один и тот же фильтр при различных условиях, т.е. в зависимости значения и частотных характеристик полных сопротивлений и , может вызывать сильно различающееся затухание. Поэтому, практически невозможно задать общую характеристику фильтра независимо от конкретных условий, и приводимые в фирменных каталогах значения коэффициента затухания фильтров согласно (4.10) относятся всегда к особому случаю системного согласования ( )и к средним значениям и ,например 50, 60, 150 или 600 Ом. Соответствующе нормированные в международном масштабе схемы для измерения коэффициента затухания ае (f) приведены на рис. 4.5.
Паспортные данные о коэффициенте затухания ае (f) можно использовать лишь при конкретных обстоятельствах, a именно в качестве показателя качества при изготовлении фильтра или как характеристику при сравнении фильтров одинаковой конструкции, поставляемых различными изготовителями, также при анализе фильтрового действия в сопоставимых схемах.
Рис. 4.5. Схемы для измерений симметричного (а) и асимметричного коэффициентов затуханий (б) ае фильтров:
при = = 50 Ом из (4.10) следует ае = 20 lg U0/2 U2,дБ, так как U20 = U0/2 согласно (4.9).
Рекомендации по выбору структуры фильтра
Таблица 4.2
Сопротивление источника | Схема фильтра | Сопротивление приемника |
Мало | Мало | |
Велико | Велико | |
Мало | Велико | |
Велико | Мало | |
Мало, неизвестно | Мало, неизвестно | |
Велико, неизвестно | Велико, неизвестно |
Во всех остальных случаях фактическая эффективность фильтра определяется лишь экспериментально в соответствии с (4.10) или же расчетным путем согласно (4.11), если точно известно соотношение полных сопротивлений и .
Если значения и известны приблизительно, выбор подходящей фильтровой структуры может производиться с использованием данных табл. 4.2.
Фильтровые элементы
Основными составными элементами фильтров являются катушки индуктивности и конденсаторы. Они могут использоваться для подавления помех отдельно или в комбинации друг с другом (см. табл. 4.2). Рисунки 4.6 и 4.7 дают общие представления о важнейших видах исполнения фильтров. Фильтровые элементы представляют собой в зависимости от номинального напряжения и пропускной способности по току приборы для монтажа в помещениях, компактные элементы, встраиваемые в шкафы, приборы, в разъемы или чип-элементы для монтажа на печатных платах.
Рис. 4.6. Примеры выполнения помехозащитных конденсаторов:
а - конденсатор с двумя выводами; б - конденсатор-ввод с тремя выводами; в - конденсатор-четырехполюсник; г - многоэлементный конденсатор
Рис. 4.7. Примеры выполнения помехозащитных катушек с рабочим током , и синфазным током помехи :
а - стержневая катушка; б - простейшая катушка с кольцевым сердечником; в - кольцевая катушка с двумя встречными обмотками и компенсацией магнитного потока, создаваемого рабочим током ; г - ферритовые кольца; д - ферритовые сердечники для плоских жгутов; е - линии с повышенным затуханием, с охватывающей оболочкой из материала с высоким затуханием; ж - ферритовые пластины со многими отверстиями для штекерных соединений и интегральных схем
Двухполюсные конденсаторы (рис. 4.6, а) в зависимости oт соединения их в токовую цепь (между прямым и обратным проводами или же между проводом и землей) пригодны для защиты как от синфазных, так и от противофазных помех (рис. 4.8, б). Конденсаторы-вводы (рис. 4.6, б) при соединении с корпусом служат для защиты только от синфазных помех (рис. 4.8, б). Конденсаторы-четырехполюсники (рис. 4.6, в) защищают от противофазных помех (рис. 4.8, в), а многосекционные конденсаторы (рис. 4.6, г) - как от противофазных, так и синфазных помех (рис. 4.8, г).
Рис. 4.8. Защита катушками индуктивности и конденсаторами от синфазных и противофазных токов помех (пояснения см. в тексте):
Q1, Q2 - источники противофазных Id и синфазных Ic токов помех; СЕ - паразитные емкости участка схемы относительно заземленного корпуса.
Защитные катушки индуктивности представляют собой катушки с возможно малыми емкостью и активным сопротивлением обмотки. Они имеют замкнутые или разомкнутые сердечники (стержни, кольца из ферромагнитного материала - трансформаторной стали, металлооксидной керамики, прессованного порошка из карбонильного железа). Катушки индуктивности со стержневым или простым кольцевым сердечником (рис. 4.7, а, б) демпфируют как синфазные, так и противофазные сигналы (рис. 4.8, д).
Так как в катушках индуктивности с сердечниками магнитная цепь не замкнута, то их магнитная проницаемость и индуктивность практически не зависят от рабочего тока. Впрочем, при больших токах габаритные размеры таких катушек индуктивности велики. Меньшие размеры имеют катушки индуктивности со скомпенсированным магнитным полем или током (рис. 4.7, в), в которых магнитное поле, создаваемое рабочим током Ib, компенсируется благодаря встречному включению обмоток. Такие катушки индуктивности демпфируют лишь синфазные токи 1с (рис. 4.8, е). Это же относится к ферритовым кольцам (рис. 4.7, г), одеваемым на провода или на плоские жгуты (рис. 4.7, д), к линиям с усиленным затуханием (рис. 4.7, е), имеющим, в частности, при частотах f>1 МГц хорошие показатели затухания, к ферритовым пластинам со многими отверстиями (рис.45.7, ж), применяемым в разъемах и внутренних соединениях.
При использовании катушек индуктивности и конденсаторов для фильтрации следует иметь в виду, что любой конденсатор наряду с емкостью С обладает паразитной индуктивностью Lp,зависящей от длины выводов конденсатора. Она особенно велика у двухполюсных конденсаторов и мала у коаксиальных конденсаторов-вводов. Каждая катушка индуктивности в дополнение к ее индуктивности L имеет паразитную емкость С. Поэтому для кажущегося сопротивления существует зависимость от частоты, представленная на рис. 5.9, обладающая peзонансной точкой, в отличие от
Рис. 4.9. Частотные зависимости кажущихся сопротивлений конденсатора (а) и катушки индуктивности (б)
Рис. 4.10. Значения собственных резонансных частот f0 помехоподавляющих конденсаторов в зависимости от их емкости С |
идеальной характеристики. Сведения о собственных резонансных частотах конденсаторов, применяемых для подавления помех, приведены на рис. 4.10. Пренебрегая активной составляющей, можно для зависимостей на рис. 4.9 использовать следующие выражения.
Для конденсаторов (рис. 4.9, а) кажущееся сопротивление
(4.12)
Идеальная характеристика при отсутствии Lp рассчитывается как
. (4.13)
Реальная характеристика с учетом Lp:
(4.14)
где .
Для катушек индуктивности (рис. 4.9, б) кажущееся сопротивление
(4.15)
идеальная характеристика при отсутствии Ср
; (4.16)
реальная характеристика с учетом Ср
. (4.17)
Здесь .
В дополнение к сказанному определим коэффициент затухания, дБ, фильтра - поперечного конденсатора (например, СХ на рис. 4.8, а), обладающего индуктивностью, в режиме согласования ( ).
При из (4.11)
. (4.18)
При кажущемся сопротивлении конденсатора и для резонансной частоты коэффициент затухания
. (4.19)
Для частот, отличающихся от , можно использовать следующие приближения:
- при и
; (4.20)
- при и
. (4.21)
На рис. 4.11 показаны прямые, рассчитанные по (4.20) и (4.21) для определенного значения ZA, а также зависимость коэффициента затухания ав от частоты при различных С и Lp. Уравнения (4.19)-(4.21) совместно с рис. 4.11 показывают, что при заданной емкости С коэффициент затухания ае тем выше, чем больше ZA и меньше паразитная индуктивность конденсатора Lp.
Отсюда можно сделать два вывода:
-не каждый имеющийся в распоряжении конденсатор можно использовать в качестве помехоподавляющего;
-емкостный фильтр предпочтителен, если имеют место высокие сопротивления источника и приемника помех (см. табл. 4.2).
Рис. 4.11. Коэффициент затухания ае фильтра, состоящего из реальных конденсаторов, в зависимости от частоты f: > > ; > > > |
Коэффициент затухания фильтра любой другой структуры можно таким же образом приближенно или точно рассчитать. Рисунок 4.12, б дает представление о затухании LC-фильтра с реальными элементами (рис. 4.12, а); в зависимости от диапазона частот коэффициент затухания определяется параметрами фильтра L, С или паразитными параметрами Lp, Cp. При низких частотах, когда элементы фильтра можно считать идеальными, коэффициент затухания ае увеличивается пропорционально квадрату частоты. Затем начинает сказываться влияние паразитных параметров Lp и Ср, и ае остается приблизительно неизменным. При высоких частотах эффект демпфирования в основном определяется паразитными параметрами Lp, Cp, и коэффициент ае уменьшается обратно пропорционально квадрату частоты.
Все предыдущие рассуждения относятся к случаю синусоидальной помехи. Если имеет место импульсная помеха, то необходимо определить ее спектр и на основании изложенного материала можно определить коэффициент затухания.
Отметим, что демпфирующие свойства фильтра при импульсном воздействии не всегда выражаются зависимостью ае от частоты, так как часто затрудняется переход от частотной области во временную вследствие нелинейности элементов фильтра, в частности катушек индуктивности.
Рис. 4.12. Коэффициент затухания ае фильтра LC :
а - схема замещения фильтра; б - принципиальная частотная зависимость коэффициента затухания ае
Однако при известной форме импульса помехи (рис. 4.13) в первом приближении можно при выборе фильтра исходить из того, что область пропускания фильтра должна достигать по крайней мере частот fg = 1/Δt или fg = l/Tr Например, при времени нарастания Тr = 5нс частота fg = 200 МГц.
Рис. 4.13. Формы импульсов |
Сетевые фильтры
Сетевые помехоподавляющие фильтры представляют собой фильтры низких частот, свободно пропускающие напряжение сети (полезный сигнал) и фильтрующие содержащиеся в сети высокочастотные составляющие (гармонические, в том числе и образующие спектр импульсных помех). Их применение преследует две цели: во-первых, защиту устройства от помех, поступающих из сети питания, и, во-вторых, снижение уровня эмиссии возможной помехи, исходящей от прибора по проводам питания. Продольный элемент фильтра выбирается с учетом потребляемого из сети тока. Хотя обычно значение полного сопротивления источника и приемника помех неизвестно, часто можно принять сопротивление со стороны сети малым, а со стороны нагрузки - большим. В связи с этим для защиты приборов от помех со стороны сети доминируют фильтры (см. строку 3 в табл. 4.2). На рис. 4.14 приведена схема фильтра, содержащего катушку индуктивности со скомпенсированным магнитным полем. Фильтр содержит конденсатор СХ для демпфирования симметричных напряжений помехи и два конденсатора
Рис. 4.14. Пример сетевого фильтра на 250 В, 1А:
а - схема, Сх = 0,1 мкФ, Су = 2x3 нФ, L = 2x3,7 мГн; б - частотная зависимость ае, схемы измерений согласно рис. 4.5; 1 - асимметричные помехи; 2 — симметричные помехи
Рис. 4.15. Пример трехфазного сетевого фильтра на 440 В, 16 А : а - схема, L1 = 60 мкГн, L2 = 4,4 мГн, Сх= 2,2 мкФ, Су = 15 нФ, R - разрядные сопротивления; б - частотная зависимость ае: 1 - асимметричные помехи; 8 - симметричные помехи |
CY для отвода асимметричных токов помехи. Впрочем, существует множество вариаций фильтров, различающихся в зависимости от изготовителя схемными и конструктивными деталями и поэтому обладающих различными демпфирующими свойствами.
В заключение приведем схему и частотную характеристику трехфазного сетевого фильтра (рис. 4.15).
Через типичные для сетевых фильтров конденсаторы, включенные между проводами сети и, как правило, заземленным корпусом прибора (CY на рис. 4.14 и 4.15), в нормальном режиме протекает ток. При этом не должно создаваться опасности при прикосновении к корпусу прибора в отсутствие или повреждении заземляющего провода. Поэтому ток через конденсаторы не должен превышать значений, лежащих в диапазоне 0,75-3 мА, что соответствует предельному значению емкости конденсаторов Су.
Приведенный пример иллюстрирует, что при использовании фильтров необходимо удовлетворять требованиям соответствуощих норм по технике безопасности (напр. VDE 0565).
Ограничители перенапряжений
Принцип действия
Ограничители перенапряжений - специальные элементы, защитные схемы и приборы - служат для снижения перенапряжений в электроэнергетических и информационно-электронных системах, вызванных молнией, разрядами статического электричества коммутационными процессами или другими причинами. Для обеспечения электромагнитной совместимости они выполняют защитные функции с целью предотвратить, в первую очередь, выход из строя электрических и электронных средств и вызванные этим нарушения нормального функционирования системы.
Рис. 4.16. Ограничение перенапряжений при помощи нелинейного сопротивления RВ: а - схема без защиты; б - схема с защитой; в - изменение напряжений во времени; USF — импульсная прочность входной цепи
Принцип действия ограничителей базируется на использовании резисторов RB, обладающих нелинейной вольт-амперной характеристикой (рис. 4.16). В конкретных случаях она выбирается такой, чтобы в допустимых пределах изменения рабочего напряжения имело место очень большое сопротивление, а при превышении заданного напряжения - очень малое. Вместе с сопротивлением источника помехи ограничитель образует схему нелинейного делителя напряжения (рис. 4.16, б), который и снижает переходное перенапряжение до допустимого значения
, (4.22)
не превышающего импульсную электрическую прочность защищаемого элемента (рис. 4.16, в).
Защитные элементы
Для ограничения перенапряжений используются защитные разрядные промежутки, варисторы и лавинные диоды. Соответственно физические принципы действия этих устройств различны. Поэтому такие характеристики защитных элементов, как напряжение и время срабатывания, уровень ограничения, степень точности ограничения напряжения, допустимая токовая нагрузка, остаточное сопротивление, гасящие свойства и другие, сильно различаются.
Разрядники конструктивно изготовляются в виде воздушных, газонаполненных устройств или элементов со скользящим разрядом. На практике они выполняют функции грубой защиты. Газонаполненный разрядник представляет собой два электрода с фиксированным расстоянием между ними, помещенными в герметичный керамический или стеклянный корпус, заполненный инертным газом. Защищаемую систему такой разрядник нагружает слабо, так как сопротивление изоляции между электродами составляет более 1010 Ом, а емкость - менее 10 пФ. Если воздействующее напряжение превышает напряжение пробоя , то происходит разряд между электродами, при этом сопротивление разрядника понижается приблизительно на 10 порядков. Напряжение на разряднике понижается до значения , обусловленного тлеющим разрядом, или же, если это допускает соотношение сопротивлений цепи, до значения дугового напряжения UB (рис. 4.17).
Напряжение пробоя UZ газонаполненного разрядника зависит от изменения воздействующего напряжения du/dt (рис. 4.18). При du/dt = 100 В/с определяется статическое UZs, а при du/dt = 1 кВ/мкс - динамическое напряжение UZd пробоя разрядника (600-700 В). Типичное изменение напряжения на разряднике во времени приведено на рис. 4.17. При очень коротких импульсаax напряжения (менее 30 нс) газонаполненный разрядник нe срабатывает.
Газонаполненные разрядники надежно пропускают стандартные токи (8/20 мкс) амплитудой до нескольких десятков килоампер, однако они способны самостоятельно гасить токи, не превышающие 1 А. Поэтому их применение в цепях электроснабжения требует последовательного включения защитного устройства, способного отключить возможный сопровождающий ток.
Рис. 4.17. Вольт-амперная характеристика газонаполненного разрядника с ориентировочными значениями напряжений тлеющего (uG) и дугового (UВ) разрядов: UZ - напряжение зажигания (см. рис. 4.18); 1 - область начальных и тлеющих разрядов; 2 - область дуговых разрядов
Рис. 4.18. Характеристики зажигания газонаполненного разрядника (1) и разрядника со скользящим разрядом (2): UZs - статическое напряжение срабатывания; UZd - динамическое напряжение срабатывания | Рис. 4.19. Типичная характеристика зажигания газонаполненного разрядника |
Воздушные защитные промежутки образуются электродами, находящимися в окружающем воздухе. Их разрядные и рабочие характеристики близки к характеристикам газонаполненных разрядников. Так как они не способны обрывать сопровождающие токи, то их применение в качестве ограничительных элементов в цепях электроснабжения возможно лишь в комбинации с предохранителями или варисторами, выполняющими функции дугогашения.
Находят также применение и закрытые воздушные (так называемые разделительные) промежутки в местах сближения грозозащитных устройств с другими заземленными частями устройства или металлическими конструкциями, которые по условиям коррозионной стойкости не должны быть гальванически долго соединены друг с другом. При грозовых воздействиях защитные промежутки устанавливаются там, где должны происходить пробои, тем самым устраняются неконтролируемые перекрытия и гарантируется выравнивание потенциалов в течение грозового разряда частей устройства, отделенных друг от друга в нормальном режиме.
Разрядники со скользящим разрядом содержат между электродами изоляционный материал. Вольт-секундные характеристики таких разрядников более пологие, чем газонаполненных (рис. 4.18). Поэтому независимо от крутизны импульс перенапряжения ограничивается до значения 2-3 кВ. Такие разрядники способны самостоятельно обрывать сопровождающие токи, и поэтому они более подходят для грубой защиты в цепях электропитания.
Рис. 4.20. Типичные вольт-амперные характеристики варисторов в линейных (а) и логарифмических (б) координатах:
I - область токов утечек; II - область импульсных токов; III - диапазон рабочих напряжений; IV - область перенапряжений
Варисторы (Variable Resistors) представляют собой элементы с симметричной вольт-амперной характеристикой (рис. 4.20). При I > 0 она выражается в виде
, (4.23)
где K - постоянная, зависящая от размеров резистора; - показатель, зависящий от материала.
Для применяемых в настоящее время металлооксидных варисторов на базе оксида цинка значение находится в пределах от 25 до 40.
Эффект ограничения напряжения основан на том, что при превышении рабочего напряжения, рассчитанного по (4.23), сопротивление
(4.24)
уменьшается на много порядков (рис. 4.20, б).
Защитный уровень варисторов в зависимости от их исполнения может лежать как в диапазоне низких, так и высоких напряжений, причем они способны поглотить значительную энергию. Их время срабатывания сравнительно мало и составляет десятки наносекунд. Оно определяется индуктивностью токопроводов. Собственная емкость варисторов велика (0,4-40 нФ), и поэтому их применение для ограничения перенапряжений в высокочастотных системах исключено. Конструктивно варисторы выполняются в виде шайб, блоков, также втулок для разъемных соединений. На практике варисторы используют преимущественно для грубой защиты.
При часто повторяющихся перенапряжениях варистор нагревается и сопровождающий ток возрастает. Этот эффект можно использовать для контроля функциональных способностей варистора.
Кремниевые лавинные диоды обладают свойством не повреждаться при воздействии напряжения, превышающего граничные, при котором они находятся в закрытом состоянии. Их разновидность - так называемые Z-диоды (стабилитроны) ( напряжением UZ - 3 ÷ 200 В (рис. 4.21) давно используются в электронных схемах для стабилизации напряжения и защиты от перенапряжений. Разработаны и специальные лавинные диоды, предназначенные для ограничения переходных перенапряжений, отличающиеся от обычных Z-диодов более высокой пропускной способностью по току, малым временем запаздывания (пикосекунды), большой поглощаемой энергией. Такие диоды выпускаются под названием ограничителей перенапряжений, супрессдиодов (ограничительных стабилитронов) трансвильдиодов или ТА Z-диодов (ТА Z - от Transient Absorbing Zener).
На рис. 4.22 приведена характеристика ограничительной стабилитрона. Она аналогична характеристике Z-диода. Напряжение UR - максимальное напряжение, при котором диод еще закрыт; UB - напряжение начала ограничения, при котором ток I = 1 мА; UС - напряжение ограничения для импульса тока Iрр (8/20 мкс).
Достигаемые уровни ограничения напряжения лежат в диапазоне 6-440 В.
Рис. 4.21. Вольт-амперная характеристика 2-диода с напряжением Ug = 3 + 200 В | Рис. 4.22. Вольт-амперная характеристика стабилитрона и его важнейшие параметры |
Экранирование
Принцип действия экранов
Экранирование служит для ослабления электрических, магнитных и электромагнитных полей, а именно для того, чтобы исключить проникновение и воздействие таких полей на элементы, блоки, приборы, кабели, помещения и здания, а также для того, чтобы подавить исходящие из электрических и электронных промышленных средств и устройств помехи, обусловленные полями. Экран устанавливается между источником и приемником помех и снижает напряженности Е0, Н0 воздействующего поля до значений E1 H1 за экраном (рис. 4.23). Физически экранирование объясняется наведением на поверхности экрана заряда или индуктированием в нем тока, поле которых накладывается на воздействующее, ослабляя его. Тем самым как бы удаляется чувствительный приемник помехи от источника.
На эффективность экранирования оказывают существенное влияние частота поля, электропроводность и магнитная проницаемость материала экрана, конфигурация и размеры экрана.
Для уточнения этих общих положений будем исходить из того, что экранирование осуществляется частично поглощением энергии поля материалом экрана (коэффициент затухания аSA обусловленный поглощением), а частично - отражением падающей волны (коэффициент затухания aSR, обусловленный отражением).
Рис. 4.23. Экранирование токовых контуров от внешних электрических и магнитных полей: а - принципиальное расположение контуров 1, 2 и экрана S; б - граница между условиями ближнего (нижняя левая часть) и дальнего (верхняя правая часть) полей
Результирующий коэффициент затухания, дБ, можно определить как
(4.25)
Или же
(4.26)
Т.е. состоит из двух компонентов:
. (4.27)
При этом не учитываются многократные отражения от стенок экрана и помещения.
Для установления существенных взаимосвязей между этими коэффициентами затухания и характеристиками магнитного поля, а также размерами экрана и свойствами его материала удобно воспользоваться понятием полных сопротивлений по аналогии с распространением волн в электрически длинной двухпроводной линии.
В зависимости от расстояния х приемника помехи от источника (рис. 4.23, а) и частоты f в ближней или дальней областях (рис.4.23, б) для определения коэффициентов затухания и , дБ, пригодны следующие выражения:
для магнитного поля в ближней зоне (x<c/2πf)