Равномерное движение.. Опре- е средней скорости
Равномерным прямолинейным движением называют такое происходящее по прямолинейной траектории движение, при котором тело (материальная точка) за любые равные промежутки времени совершает одинаковые перемещения.
Скоростью равномерного прямолинейного движения называют векторную величину, равную отношению перемещения тела к промежутку времени, в течение которого было совершено это перемещение:
v=s/t. Направление скорости в прямолинейном движении совпадает с направлением перемещения.
Поскольку в равномерном прямолинейном движении за любые равные промежутки времени тело совершает равные перемещения, скорость такого движения является величиной постоянной (v=const).
Средней скоростью переменного движения vcp называют векторную величину, равную отношению перемещения тела s к промежутку времени t, за который было совершено это перемещение:
vcp=s/t.Криволинейное движение. характеристика
Криволинейное движение – это движение, траектория которого представляет собой кривую линию (например, окружность, эллипс, гиперболу, параболу).
Примером криволинейного движения является движение планет, конца стрелки часов по циферблату и т.д.
Характеристики:Период обращения— это время, за которое тело совершается один оборот.Обозначается период буквой Т (с) и определяется по формуле:
где t — время обращения, п — число оборотов, совершенных за это время.
Частота обращения— это величина, численно равная числу оборотов, совершенных за единицу времени.Обозначается частота греческой буквой (ню) и находится по формуле:
Измеряется частота в 1/с.Период и частота — величины взаимно обратные:
Угловая скорость (w) – величина, равная отношению угла поворота радиуса, на котором находится вращающаяся точка, к промежутку времени, за который произошел этот поворот:
.5. опытные обоснования СТО. Постулаты Энштейна.
СТО - Специальнаятеория относительности
В основе специальной теории относительности лежат два принципа или постулата( утверждения, аксиомами), сформулированные Эйнштейном в 1905 г.
1. Принцип относительности: все законы природы инвариантны по отношению к переходу от одной инерциальной системы отсчета к другой. Это означает, что во всех инерциальных системах физические законы (не только механические) имеют одинаковую форму. Таким образом, принцип относительности классической механики обобщается на все процессы природы, в том числе и на электромагнитные. Этот обобщенный принцип называют принципом относительности Эйнштейна.
2. Принцип постоянства скорости света: скорость света в вакууме не зависит от скорости движения источника света или наблюдателя и одинакова во всех инерциальных системах отсчета. Скорость света в СТО занимает особое положение. Это предельная скорость передачи взаимодействий и сигналов из одной точки пространства в другую.
Эти принципы следует рассматривать как обобщение всей совокупности опытных фактов. Следствия из теории, созданной на основе этих принципов, подтверждались бесконечными опытными проверками. СТО позволила разрешить все проблемы «доэйнштейновской» физики и объяснить «противоречивые» результаты известных к тому времени экспериментов в области электродинамики и оптики. В последующее время СТО была подкреплена экспериментальными данными, полученными при изучении движения быстрых частиц в ускорителях, атомных процессов, ядерных реакций и т. п.6. Преобразования ЛоренцаКинематические формулы преобразования координат и времени в СТО называются преобразованиями Лоренца. Они были предложены в 1904 году еще до появления СТО как преобразования, относительно которых инвариантны уравнения электродинамики.
Определение динамики. Основные понятия – инерция, инертность, масса, сила.
Динамикой называется раздел механики, в котором изучаются законы движения материальных тел под действием сил.
Понятие о силе, как о величине, характеризующей меру механического взаимодействия материальных тел, было введено в статике. Но при этом в статике мы, по существу, считали все силы постоянными. Между тем, на движущееся тело наряду с постоянными силами (постоянной, например, можно считать силу тяжести) действуют обычно силы переменные, модули и направления которых при движении тела изменяются.
Как показывает опыт, переменные силы могут определенным образом зависеть от времени, от положения тела и от его скорости. В частности, от времени зависит сила тяги электровоза при постепенном выключении или включении реостата; от положения тела зависит сила упругости пружины; от скорости движения зависят силы сопротивления среды (воды, воздуха).
К понятию об инертности тел мы приходим, сравнивая результаты действия одной и той же силы на разные материальные тела. Опыт показывает, что если одну и ту же силу приложить к двум разным, свободным от других воздействий покоящимся телам, то в общем случае по истечении одного и того же промежутка времени эти тела пройдут разные расстояния и будут иметь разные скорости.
Прямолинейное равномерное движение материального тела называется инерциональным (или движением по инерции). Инерция – это свойство материального тела оказывать сопротивление изменению скорости его движения (как по величине, так и по направлению). Инертность – неотъемлемое свойство материи. Такое сопротивление возможно только потому, что тела обладают определённой массой, которую считают количественной мерой инертности.
Масса – количественная мера инертности тела. Единица измерения массы в СИ называется килограмм (кг).
Законы Ньютона.
Первый закон Ньютона. Существуют такие системы отсчета, относительно которых поступательно движущееся тело сохраняет свою скорость постоянной, если на него не действуют другие тела (или действия других тел компенсируются) . Этот закон часто называется законом инерции, поскольку движение с постоянной скоростью при компенсации внешних воздействий на тело называется инерцией.
Второй закон Ньютона. Сила, действующая на тело, равна произведению массы тела на сообщаемое этой силой ускорение . - ускорение прямо пропорционально действующей (или равнодействующей) силе и обратно пропорционально массе тела.
Третий закон Ньютона. Из опытов по взаимодействию тел следует, из второго закона Ньютона и, поэтому . Силы взаимодействия между телами: направлены по одной прямой, равны по величине, противоположны по направлению, приложены к разным телам (поэтому не могут уравновешивать друг друга) , всегда действуют парами и имеют одну и ту же природу.
Законы Ньютона выполняются одновременно, они позволяют объяснить закономерности движения планет, их естественных и искусственных спутников. Иначе, позволяют предвидеть траектории движения планет, рассчитывать траектории космических кораблей и их координаты в любые заданные моменты времени. В земных условиях они позволяют объяснить течение воды, движение многочисленных и разнообразных транспортных средств (движение автомобилей, кораблей, самолетов, ракет) . Для всех этих движений, тел и сил справедливы законы Ньютона.9. закон всемирного тяготения. Ускорение свободного падения, космические скорости.
Закон всемирного тяготения. Подобно тому как Луна движется вокруг Земли, Земля в свою очередь обращается вокруг Солнца. Вокруг Солнца обращаются Меркурий, Венера, Марс, Юпитер и другие планеты Солнечной системы. Ньютон доказал, что движение планет вокруг Солнца происходит под действием силы притяжения, направленной к Солнцу и убывающей обратно пропорционально квадрату расстояния от него. Земля притягивает Луну, а Солнце — Землю, Солнце притягивает Юпитер, а Юпитер — свои спутники и т. д. Отсюда Ньютон сделал вывод, что все тела во Вселенной взаимно притягивают друг друга.Силу взаимного притяжения, действующую между Солнцем, планетами, кометами, звездами и другими телами во Вселенной, Ньютон назвал силой всемирного тяготения.Сила всемирного тяготения, действующая на Луну со стороны Земли, пропорциональна массе Луны). Очевидно, что сила всемирного тяготения, действующая со стороны Луны на Землю, пропорциональна массе Земли. Эти силы по третьему закону Ньютона равны между собой. Следовательно, сила всемирного тяготения, действующая между Луной и Землей, пропорциональна массе Земли и массе Луны, т. е. пропорциональна произведению их масс.
Закон всемирного тяготения гласит: все тела притягиваются друг к другу, при этом сила их притяжения прямо пропорциональна массе каждого из тел и обратно пропорциональна квадрату расстояния между ними:
. где F величина вектора силы притяжения между телами, m_1 и m_2 массы этих тел
r расстояние между телами, G гравитационная постоянная.
Свободное падение тел. Падение тел на Землю в пустоте называется свободным падением тел. При падении в стеклянной трубке, из которой с помощью насоса откачан воздух, кусок свинца, пробка и легкое перо достигают дна одновременно. Следовательно, при свободном падении все тела независимо от их массы движутся одинаково. Свободное падение является равноускоренным движениемСвободным падением тел называют падение тел на Землю в отсутствие сопротивления воздуха (в пустоте). В конце XVI века знаменитый итальянский ученыйГ. Галилей опытным путем с доступной для того времени точностью установил, что в отсутствие сопротивления воздуха все тела независимо отмассы тела падают на Землю равноускоренно, и что в данной точке Земли ускорение всех тел при падении одно и то же. А до этого в течение почти двух тысяч лет, начиная с Аристотеля, в науке было принято считать, что тяжелые тела падают на Землю быстрее легких.
Ускорение, с которым падают на Землю тела, называется ускорением свободного падения.
Если скорость тела изменяется со временем, то говорят, что оно ускоряется. Автомобиль, скорость которого увеличивается от нуля до 80 км/ч, ускоряется. Если другой автомобиль может совершить такой разгон за меньшее время, чем первый, то говорят, что он испытывает большее ускорение
В поддержку своего утверждения о том, что скорость падающих тел увеличивается при падении, Галилей привел следующий аргумент: тяжелый камень, сброшенный с высоты 2м, загонит сваю в землю значительно глубже, чем тот же камень, упавший лишь с 10см. Ясно, что в первом случае камень должен ускориться больше. Галилей утверждал, что любые предметы (как тяжелые, так и легкие) падают с одинаковым ускорением, по крайней мере при отсутствии воздуха. Правда, здравый смысл подсказывает следующий пример: если держать лист бумаги горизонтально в одной руке, а более тяжелое тело, скажем бейсбольный мяч, в другой и высвободить одновременно их, то очевидно, что более тяжелое тело достигнет земли первым. Если повторить этот эксперимент, на этот раз смять бумагу в маленький комок, то можно увидеть, что оба тела достигнут земли почти одновременно.
Ускорение свободного падения обозначается символом G. Его значение приближенно равно G = 9,80 м/с². В действительности G несколько меняется в зависимости от географической широты местности, что связано с вращением Земли, а также в зависимости от высоты над уровнем моря. Однако эти изменения незначительны. В некоторых случаях также оказывает влияние сопротивление воздуха, но оно также незначительно. Поэтому G является величиной постоянной. 10. Виды сил. Как определяется сила трения, сила упругости, вес тела, сила тяжести. Понятие невесомость.
Сила тяжести – сила, с которой планета (например, Земля) притягивает к себе окружающие тела. Сила тяжести имеет гравитационную природу. Направление силы тяжести – вертикально вниз.Сила упругости – сила, которая возникает при деформациях тел, как ответная реакция на внешнее воздействие. Сила упругости возникает из-за притяжения или отталкивания молекул и атомов, и имеет электромагнитнуюприроду. Деформация – изменение формы или объема тела. Виды деформаций: растяжение; сжатие; изгиб (комбинированный случай одновременного сжатия и растяжения); сдвиг; кручение. Упругиедеформации исчезают после снятия нагрузки. Т.е. тело – например, пружина – принимает прежние форму и размер (длину). В задачах не обязательно фигурирует "пружина", может быть трос, резинка и любое другое упругое тело. Пластическиедеформации остаются после снятия нагрузки, с ними на экзамене вы не встретитесь.
Сила трения возникает при движении тел или при попытке сдвинуть их с места. Она действует на поверхности тел и затрудняет их перемещение относительно друг друга. Относится к силам электромагнитнойприроды. Трение бывает сухое и жидкое. Сухое делится на три вида: трение покоя, трениескольжения и трение качения.
Сила трения всегда направлена противоположно направлению (возможного) проскальзывания рассматриваемого тела по поверхности другого. Например, при резком торможении автомобиля его колёса проскальзывают вперёд, значит, действующая на них сила трения о дорогу направлена в противоположную сторону, то есть назад.
Сила трения возникает не только при скольжении одного тела по поверхности другого. Существует также сила трения покоя. Например, отталкиваясь ботинком от дороги, мы не наблюдаем его проскальзывания. При этом возникает сила трения покоя, благодаря которой мы движемся вперёд. В отсутствие этой силы мы бы не смогли сделать и шага, как, например, на льду.
Вес тела – сила, с которой тело вследствие притяжения к Земле, действует на опору или подвес (сила, с которой тело давит на опору или растягивает подвес). Относится к силам электромагнитнойприроды. Измеряется динамометром. Единица измерения – ньютон (Н). (Не путайте вес и массу!)
Невесомость. Исчезновение веса при движении опоры с ускорением свободного падения называется невесомостью. Состояние невесомости наблюдается в самолете или космическом корабле при движении с ускорением свободного падения независимо от направления и значения модуля скорости их движения. За пределами земной атмосферы при выключении реактивных двигателей на космический корабль действует только сила всемирного тяготения. Под действием этой силы космический корабль и все тела, находящиеся в нем, движутся с одинаковым ускорением; поэтому в корабле наблюдается явление невесомости.